NOVEMBER, 2017

UNIT 4: POLYNOMIALS

SECTION 5.2: LIKE TERMS AND UNLIKE TERMS

K. Sears

MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Patterns and Relations 5" OR PR5 which states:

PR5: "Demonstrate an understanding of polynomials (limited to polynomials of degree less than or equal to 2)."

What does THAT mean???

Polynomials, or "pre-algebra", prepare us for solving equations ("algebra").

SCO PR5 means that we will learn about the different parts of polynomials which are a combination of numbers, variables (letters) and mathematical operations (+/-/x). We will use "algebra tiles" (little plastic rectangles and squares) to help us understand polynomials.

HOMEWORK QUESTIONS?

(Pages 214 / 215 / 216, #8, 11, 12, 13, 15, 16 & 20)

When you work with integers,

a 1-tile and a -1-tile form a zero pair.

What do you think happens when you combine algebra tiles with opposite signs? Which expression do these tiles represent?

Here is a collection of red and yellow algebra tiles:

(follow along on pg. 218)

We organize the tiles by grouping like tiles:

These tiles represent the polynomial: $2x^2 - x^2 - 4x + 2 - 3$

We simplify the tile model by removing zero pairs.

The remaining tiles represent the polynomial: $x^2 - 4x - 1$

Terms that can be represented by algebra tiles with the same size and shape are called LIKE TERMS.

 $-x^2$ and $3x^2$ are like terms. Each term is modelled with x^2 -tiles. Each term has the same variable, x, raised to the same exponent, 2.

We simplify a polynomial symbolically (with letters and numbers) by <u>adding the numerical coefficients of like terms</u>. This is called *combining like terms*. They have the same variable raised to the same exponent.

ex:
$$-x^2 + 3x^2$$
= $-1x^2 + 3x^2$ (add the num. coeffs. of -1 and 3)
= $2x^2$

 $-x^2$ and 3x are *unlike terms*. Each term is modelled with a different algebra tile.

Each term has the variable *x*, but the exponents are different.

 $-x^2 + 3x$ CANNOT be simplified. We cannot add numerical coefficients when we have unlike terms. (- $x^2 + 3x$ have different exponents.)

EXAMPLE 1 - PAGE 219:

Simplify:
$$4n^2 - 1 - 3n - 3 + 5n - 2n^2$$

 $4n^2 - 2n^2 - 3n + 5n - 1 - 3$
 $2n^2 + 2n - 4$

EXAMPLE 2 - PAGE 220:

Simplify:
$$14x^2 - 11 + 30x + 3 + 15x - 25x^2$$

 $|4x^2 - 25x^2 + 30x + 15x - 1| + 3$
 $|4x^2 - 25x^2 + 30x + 15x - 1| + 3$
 $|4x^2 - 25x^2 + 30x + 15x - 1| + 3$

EXAMPLE 3 - PAGE 220/221:

Write a polynomial to represent the perimeter of each rectangle.

Remember: P (rectangle) = s + s + s + s OR = 2l + 2w

EXAMPLE 3 - PAGE 220/221 (cntd.):

Each polynomial represents the perimeter of a rectangle. Use algebra tiles to make the rectangle.

EXAMPLE 4 - PAGE 221:

A polynomial may contain more than one variable. Here is a polynomial containing two variables - "x" and "y"; simplify the polynomial:

$$4xy - y^{2} - 3x^{2} + 2xy - x - 3y^{2}$$

$$-3x^{2} - x + 4xy + 2xy - y^{2} - 3y^{2}$$

$$-3x^{2} - x + 6xy - 4y^{2}$$

CONCEPT REINFORCEMENT:

MMS9

Page 222: #6 TO #10

Page 223: #12 TO #15 and #19
Page 224: #20 and #22