18

REACTION RATES AND EQUILIBRIUM

Practice Problems

In your notebook, solve the following problems.

SECTION 18.1 RATES OF REACTION

- 1. List three ways that reaction rates can generally be increased.
- **2.** Ethyl acetate $(C_4H_8O_2)$ reacts with a solution of sodium hydroxide (NaOH) in water to form sodium acetate $(C_2H_3O_2Na)$ and ethyl alcohol (C_2H_6O) . Suppose at 25°C two moles of ethyl acetate react completely in four hours. How would you express the rate of reaction?
- **3.** How would the following actions likely change the rate of the reaction in problem 2?
 - **a.** the temperature is lowered to 4°C.
 - **b.** the concentration of sodium hydroxide in water is increased.
- **4.** Ethyl acetate and water are not miscible; thus, the reaction in problem 2 only occurs at the interface of the two liquids. What would be the effect on the reaction rate of adding a solvent to make the reaction homogeneous?

SECTION 18.2 REVERSIBLE REACTIONS AND EQUILIBRIUM

1. Write the expression for the equilibrium constant for this reaction:

$$2N_2O_5(g) \rightleftharpoons 4NO_2(g) + O_2(g)$$

- 2. Calculate the equilibrium constant for the reaction in problem 1 if the equilibrium concentrations are $[N_2O_5] = 0.50 \text{ mol/L}$, $[NO_2] = 0.80 \text{ mol/L}$, $[O_2] = 0.20 \text{ mol/L}$.
- **3.** How would the equilibrium position for the equation in problem 1 be affected by
 - **a.** an addition of O_2 to the reaction vessel?
 - **b.** a decrease in the pressure?
- **4.** The equilibrium constant for the reaction of nitrogen dioxide to form dinitrogen tetroxide is 5.6.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

In a one-liter container, the amount of N_2O_4 , at equilibrium, is 0.66 mol. What is the equilibrium concentration of NO_2 ?

- 5. Write the equilibrium constant expression for each of the following reactions.
 - **a.** $4NO(g) + 2O_2(g) \rightleftharpoons 2N_2O_4(g)$ **c.** $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$
 - **b.** $2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$ **d.** $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$
- **6.** What effect would an increase in pressure have on the equilibrium position of each reaction in problem 5?

- 7. Which value of K_{eq} indicates most favorably for product formation, $K_{eq} = 1 \times 10^{12}$, $K_{eq} = 1.5$, or $K_{eq} = 5.6 \times 10^{-4}$?
- **8.** Hydrogen sulfide gas decomposes into its elements and establishes an equilibrium at 1400 °C.

$$2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$$

A liter of this gas mixture at equilibrium contains 0.18 mol H_2S , 0.014 mol H_2 , and 0.035 mol S_2 . Calculate the equilibrium constant, K_{eq} , for this reaction.

SECTION 18.3 SOLUBILITY EQUILIBRIUM

- 1. Write the solubility product expression for **a.** $Ca(OH)_2$ and **b.** Ag_2CO_3 .
- **2.** What is the concentration of silver ions in a saturated solution of silver carbonate? The K_{sp} of Ag₂CO₃ is 8.1 × 10⁻¹².
- **3.** The equilibrium concentration of hydroxide ions in a saturated solution of iron(II) hydroxide is $1.2 \times 10^{-5}M$ at a certain temperature. Calculate the $K_{\rm sp}$ of Fe(OH)₂ at this temperature.
- **4.** Strontium carbonate has a $K_{sp} = 9.3 \times 10^{-10}$ at 25°C. What is the concentration of strontium ions in a saturated solution of SrCO₃?
- **5.** What is the equilibrium concentration of silver ions at 25°C in a 1.0-L saturated solution of silver carbonate to which 0.20 mol of Na₂CO₃ has been added? The $K_{\rm sp}$ of Ag₂CO₃ is 8.1 × 10⁻¹² at 25°C.
- 6. Will a precipitate of PbSO₄ form when 400.0 mL of 0.0050M MgSO₄ is mixed with 600.0 mL of 0.0020M Pb(NO₃)₂? The K_{sp} of PbSO₄ = 6.3×10^{-7} .
- 7. Will precipitation of CaCO₃ occur when 500.0 mL of $4.2 \times 10^{-3}M$ CaCl₂ is mixed with 500.0 mL of $2.6 \times 10^{-3}M$ Na₂CO₃? The K_{sp} of CaCO₃ is 4.5×10^{-9} .
- 8. Which of these compounds would not decrease the solubility of $Mg(OH)_2$ when added to a saturated solution of the compound?

NaOH, MgCl₂, NaCl, KOH

SECTION 18.4 ENTROPY AND FREE ENERGY

1. When gently warmed, the element iodine will sublime:

 $I_2(s) \rightarrow I_2(g)$

Is this process accompanied by an increase or decrease in entropy?

- **2.** Does entropy increase or decrease when air is cooled and liquefied (changed from a gas to a liquid)?
- 3. Is the degree of disorder increasing or decreasing in these reactions?
 - **a.** $H_2(g) + Br_2(l) \rightarrow 2HBr(g)$
 - **b.** $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}(s) \rightarrow \text{CuSO}_4(s) + 5\text{H}_2\text{O}(g)$
 - **c.** $2\text{XeO}_3(s) \rightarrow 2\text{Xe}(g) + 3\text{O}_2(g)$
- **4.** Classify each of these systems as always spontaneous (A), never spontaneous (N), or depends on the relative magnitude of the heat and entropy changes (D).
 - a. entropy decreases, heat is released
 - b. entropy decreases, heat is absorbed
 - **c.** entropy increases, heat is absorbed
 - d. entropy increases, heat is released

Name ____

SECTION 18.5 THE PROGRESS OF CHEMICAL REACTIONS

Date _____

- **1.** A first-order reaction has an initial reaction rate of 2.4 mol/(L•s). What is the rate when one eighth the starting materials remain?
- **2.** It has been experimentally determined that the rate law for the reaction between mercury(II) chloride and sodium oxalate is third-order overall and first-order with respect to HgCl₂. Write the rate law for this reaction.

$$2\text{HgCl}_2 + \text{Na}_2\text{C}_2\text{O}_4 \rightarrow 2\text{NaCl} + 2\text{CO}_2 + \text{Hg}_2\text{Cl}_2$$

3. A combination reaction gave the following data. What is the rate law for this reaction?

Initial Concentration (mol/L)		Initial Rate (mol/L•s)
[J]	[K]	
0.30	0.50	0.080
0.60	0.50	0.160
0.60	0.25	0.080

4. Iodide ion catalyzes the decomposition of hydrogen peroxide. The reaction is first-order in H_2O_2 . What is the value of the rate constant, *k*, if the initial rate is 0.00842 mol/(L•s)?

The initial concentration of H_2O_2 is 0.500 mol/L.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

- **5.** A proposed reaction mechanism has two intermediates. How many elementary reactions are in this mechanism?
- **6.** The reaction $A + B \rightarrow C$ is first-order in A and B, second-order overall. Complete the following table:

Initial Concentration (mol/L)		Initial Rate (mol/L•s)
[A]	[B]	
0.50	0.50	0.020
0.50		0.040
0.25	1.0	

7. The condensation of acetic acid $(C_2H_4O_2)$ with methanol (CH_4O) to form methyl acetate $(C_3H_6O_2)$ and water is catalyzed by HCl.

$$C_2H_4O_2 + CH_4O \stackrel{HCl}{\rightleftharpoons} C_3H_8O_3 \stackrel{HCl}{\rightleftharpoons} C_3H_6O_2 + H_2O$$

- a. How many elementary reactions are there in this condensation?
- **b.** Write the formula for the reaction intermediate(s).
- **c.** Write the rate law for this condensation.

469