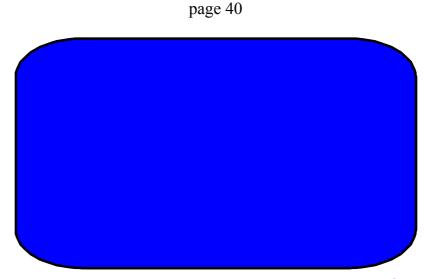


OVERLAP

Step 1) Calculate the Surface area of each Prism INDIVIDUALLY



Total Surface Area = Rectangular prism + Triangular Prism - (OVERLAP)
=
$$(500 \text{cm}^2)$$
 + 346.4 cm^2 - 240cm^2
= 606.4 cm^2

Homework solutions

3 a) cylinder on a cube

Area of cylinder =
$$\frac{2}{17}r^2 + 2_{TT}rh$$

= 2(3.14)(1cm) + 2(3.14)(1cm)(4cm)
= 2(3.14)(1cm) + 2(3.14)(1cm)(4cm)

$$= 6.28 \text{ cm}^2 + 25.12 \text{ cm}^2$$

$$= 6.28 \text{ cm}^2$$

Cube

$$area = 4cm \times 4cm$$
$$= 16 cm^2$$

Area = 6 faces x (area of one face)
=
$$6 \times (16 \text{ cm}^2)$$

= 96 cm^2

Total SA = Cylinder + Cube - Overlap
=
$$31.4 \text{ cm}^2 + 96 \text{ cm}^2 - 6.28 \text{ cm}^2$$

= 121.12 cm^2
= 121 cm^2

Area of cylinder =
$$2_{\Pi}r^2 + 2_{\Pi}rh$$

= $2(3.14)(0.5cm)^2 + 2(3.14)(0.5cm)(3cm)$
= $2(3.14)(0.25cm) + 2(3.14)(0.5cm)(3cm)$
= $1.57 \text{ cm}^2 + 9.42 \text{ cm}^2$
= 10.99 cm^2

Rectangular Prism

Rectangular Prism
$$SA = 2(18 \text{ cm}^2) + 2(12\text{cm}^2) + 2(24\text{cm}^2)$$

= $36 \text{ cm}^2 + 24\text{cm}^2 + 48\text{cm}^2$
= 108cm^2

Homework solutions

page 40

long tube

Area of cylinder =
$$2\pi r^2 + 2\pi rh$$

= 2(3.14)(1cm³) + 2(3.14)(1cm)(10cm)
= 2(3.14)(1cm) + 2(3.14)(1cm)(10cm)
= 6.28 cm² + 62.8 cm²
= 69.08 cm²

puck shape

Area of 2nd cylinder =
$$\frac{2}{17}r^2 + 2_{TT}rh$$

= 2(3.14)(5cm²) + 2(3.14)(5cm)(2cm)
= 2(3.14)(25cm) + 2(3.14)(5cm)(2cm)
= 157 cm² + 62.8cm²
= 219.8 cm²

Total SA = Cylinder + Cylinder - Overlap
=
$$69.08 \text{ cm}^2 + 219.8 \text{ cm}^2 - 6.28 \text{ cm}^2$$

= 282.6 cm^2
= 283 cm^2

d) cube on a triangular prism

Over lap

Triangular Prism

$$A = \frac{b \times h}{2}$$

$$A = b \times h$$

 $A = 15 \times 6$
 $A = 90 \text{ cm}^2$

1

15 cm

6 cm

$$A = b \times h$$

 $A = 9 \times 6$
 $A = 54 \text{ cm}^2$

$$A = b x h$$

 $A = 12 x 6$
 $A = 72 cm^2$

$$A = 9 \times 12$$

$$A = \frac{108}{2}$$

$$A = 54$$

$$2A = 108 \text{ cm}^2$$

Cube

$$A = b x h$$

 $A = 3 x 3$
 $A = 9 cm^2$

Area = 6 faces x (area of one face)
=
$$6 \times (9 \text{ cm}^2)$$

= 54 cm^2

Total SA = Triangular Prism + Cube - Overlap
=
$$324 \text{ cm}^2 + 54 \text{cm}^2 - 18 \text{ cm}^2$$

= 360 cm^2

Area of cylinder =
$$2_{\Pi}r^2 + 2_{\Pi}rh$$

= $2(3.14)(2\text{cm})^2 + 2(3.14)(2\text{cm})(1.5\text{cm})$
= $2(3.14)(4\text{cm}) + 2(3.14)(2\text{cm})(1.5\text{cm})$
= $25.12 \text{ cm}^2 + 18.84 \text{ cm}^2$
= 43.96 cm^2

Area of cylinder =
$$2\pi r^2 + 2\pi rh$$

= $2(3.14)(0.5\text{cm})^2 + 2(3.14)(0.5\text{cm})(4.5\text{cm})$
= $2(3.14)(0.25\text{cm}) + 2(3.14)(0.5\text{cm})(4.5\text{cm})$
= $1.57/\text{cm}^2 + 14.13 \text{ cm}^2$
= 15.7 cm^2

Total SA = Cylinder + Cylinder - Overlap
=
$$43.96 \text{ cm}^2 + 15.7 \text{ cm}^2 - 1.57 \text{ cm}^2$$

= 58.09 cm^2
= 58.1 cm^2

Homework solutions

4 b) The cylinder is 3.5 m long with diameter 0.5 m.

overlap 1 $A = \pi r^2$ = (3.14) (0.25m)² = (3.14) (0.0625m)

=
$$(3.14)$$
 (0.0625 m)
= 0.19625 m^2
= 0.3925m^2
= 0.3925m^2

Overlap 2 $A = \pi r^{2}$ = (3.14) (0.25 m)² = (3.14) (0.0625 m) = $0_{x}^{1} 9675 m^{2}_{e}$ involved = 0.3925 m²

total overlap = overlap 1 + overlap 2

$$0.3925 \text{ m}^4 + 0.3925 \text{ m}^2$$

= 0.785 m

SA Prism 1 =
$$2(3.75 \text{ m}^2) + 2(2.25\text{m}^2) + 2(3.75\text{m}^2)$$

= $7.5 \text{ m}^2 + 4.5\text{m}^2 + 7.5\text{m}^2$
= 19.5 m^2

Cube)

Surface area of 1 face =
$$2.5 \text{ m} \times 2.5 \text{m}$$

= 6.25 m^2
 $\times 6 \leftarrow 6 \text{ equal faces}$
 37.5 m^2

Or if you rounded to the nearest thenth

Total SA= Rectangular Prism + Cube + Cylinder - Total Overlap =
$$19.5 \text{ m}^2$$
 + 37.5 m^2 + 5.8875 m^2 - 0.785 m^2 = 19.5 m^2 + 37.5 m^2 + 5.9 m^2 - 0.8 m^2 = 62.1 m^2

- 5. Determine the surface area of each composite object.
 - a) The cylinder is 2.5 m long with radius 0.5 m.

Missig Ste

height² =
$$c^2$$
 - b^2
= $(2.5 \text{ m})^2$ - $(1.5 \text{ m})^2$
= 6.25 m^2 - 2.25m^2
= 4 m^2
height = $\sqrt{4 \text{m}^2}$
height = 2 m

$$A = \frac{b \times h}{2}$$

$$A = \frac{3m \times 2m}{2}$$

$$A = 3 \text{ m}^2$$

2.5 m

A= b x h
=
$$2.5 \text{ m x 1m}$$

= 2.5m^2

A= b x h
=
$$2.5 \text{ m x 1m}$$

= 2.5m^2

Total SA Triangular Prism = 2 triangles + rectangle + rectangle + rectangle =
$$2 (3 \text{ m}^2) + 3 \text{ m}^2 + 2.5 \text{ m}^2 + 2.5 \text{ m}^2$$

= $6 \text{ m}^2 + 3 \text{ m}^2 + 2.5 \text{ m}^2 + 2.5 \text{ m}^2$
= 14 m^2

Cylinder

Area of cylinder =
$$2\pi r^2 + 2\pi rh$$

= $2(3.14)(0.5)^2 + 2(3.14)(0.5)(2.5)$
= $2(3.14)(0.25) + 2(3.14)(0.5)(2.5)$
= $1.57 \text{ m}^2 + 7.85 \text{ m}^2$
= 9.42 m^2

Area of Overlap

Area of circle =
$$\pi r^2$$

= (3.14)(0.5 3)
= (3.14)(0.25)
= 0.785 m²
x 2 faces
1.57 m²

b) The base of the triangular prism is an equilateral triangle with side length 2.8 cm.

height' =
$$c^2 - b^2$$

= $(2.8 \text{ m})^2 - (1.4 \text{ m})^2$
= $7.84 \text{ m}^2 - 1.96 \text{m}^2$
= 5.88 m^2
height = $\sqrt{5.88 \text{m}}^2$
height = 2.4 m

Total SA Triangular Prism = 2 triangles + rectangle + rectangle + rectangle =
$$2 (3.36 \text{ m}^2) + 3.36 \text{ m}^2 + 3.36 \text{ m}^2 + 3.36 \text{ m}^2 + 3.36 \text{ m}^2$$

= $6.72 \text{ m}^2 + 3.36 \text{ m}^2 + 3.36 \text{ m}^2 + 3.36 \text{ m}^2$
= 16.8 m^2

Prism

Overlap Area

A= b x h
= 2.8 m x 1.2 m
= 3.36 m²
$$x 2 \text{ faces}$$

 6.72 m^2

Total SA = 2 Triangles + Rectangle + Rectangle + Rectangle of triangular prism =
$$2(0.75 \text{ m}^2) + 3.75 \text{ m}^2 + 3.75 \text{ m}^2 + 6 \text{ m}^2$$

= $1.5 \text{ m}^2 + 3.75 \text{ m}^2 + 3.75 \text{ m}^2 + 6 \text{ m}^2$
= 15 m^2

Prism

Prism =
$$2 \text{ top} + 2 \text{ side} + 2 \text{ front}$$

= $2 (6) + 2 (6) + 2 (4)$
= $12 + 12 + 8$
= 32

Overlap = b x h
= 3 m x 2 m
= 6 m²

$$\frac{\text{x 2 faces}}{12 \text{ m}^2}$$

with bottom = Triangular Prism + Rectangular Prism - overlap
=
$$15 \text{ m}^2 + 32 \text{ m}^2 - 12 \text{ m}^2$$

= 35 m^2

Class / Homework Review For Test

Handout: Surface Area Worksheet

Questions: 1-6

answers were on the board

- Questions from Textbook:

```
page 45 - 46

#2(b, d, f, h)
#12ac
#3(a,b,c,d,e)
#13ab
#4(a,d)
#5 (a, c, e)
#6 (b,d)
#7(ad)

Page 31
```

Worksheet Answers

- 1680 cm2
- 2) 952.8 m²
 - 3) 791.3 cm2
 - 4) 990 mm²
 - 5) 528 9 cm²
 - 6) 426.8 cm2