SAMPLE CHAPTER TEST SOLUTIONS

Part A: Multiple Choice

1. b) \$1200.00 Area: 5 m × 8 m = 40 m² 40 m² × \$30.00/m² = \$1200.00 2. a) 35 yd² 15 ft × $\frac{1 yd}{3 ft}$ = 5 yd 21 ft × $\frac{1 yd}{3 ft}$ = 7 yd Area: 5 yd × 7 yd = 35 yd² 3. c) 80.688 yd² 7.5 m × $\frac{1 yd}{0.9144 m}$ = 8.20 yd 9 m × $\frac{1 yd}{0.9144 m}$ = 9.84 yd Area: 8.20 yd × 9.84 yd = 80.688 yd² 4. a) 18.9270 L 3.7854 L 1 gal = $\frac{x L}{5 gal}$ (5 gal) $\frac{3.7854 L}{1 gal}$ = 18.9270 L 5. d) 89.58 in² SA = $2\pi rh$ SA = $2\pi rh$ SA = $2\pi (3.125 \div 2)(9.125)$ SA = 89.58 m³

Part B: Short Answer

6. Convert the dimensions to feet using the scale 0.25 in equals 18 ft. Entire property (large rectangle) is 72 ft × 108 ft. Building (small square) is 54 ft × 54 ft. Shaded area = large rectangle area – small rectangle area Shaded area = $(72 \text{ ft} \times 108 \text{ ft}) - (54 \text{ ft} \times 54 \text{ ft})$ Shaded area = $7776 \text{ ft}^2 - 2916 \text{ ft}^2 = 4860 \text{ ft}^2$ Bags of salt: 4860 ft² 1500 ft² = 3.24 She needs to buy 4 bags of salt.

7. Plan 1: 3 yd $\times \frac{3 \text{ ft}}{1 \text{ yd}} = 9 \text{ ft}$

 $4 \text{ yd} \times \frac{3 \text{ ft}}{1 \text{ yd}} = 12 \text{ ft}$ Area: 9 ft \times 12 ft = 108 ft² Cost labour: $108 \text{ ft}^2 \times \$8.50/\text{ft}^2 = \$918.00$ Cost bricks: $\frac{5.00}{\text{ft}^2} \times 108 \text{ ft}^2 = \frac{540.00}{100}$ Total cost: \$540.00 + \$918.00 = \$1458.00Plan 2: $2.5 \text{ yd} \times \frac{3 \text{ ft}}{1 \text{ yd}} = 7.5 \text{ ft}$ $5 \text{ yd} \times \frac{3 \text{ ft}}{1 \text{ yd}} = 15 \text{ ft}$ Area: $15 \text{ ft} \times 7.5 \text{ ft} = 112.5 \text{ ft}^2$ Cost labour: 112.5 $ft^2 \times \$8.50/ft^2 = \956.25 Cost bricks: $5.00/\text{ft}^2 \times 112.5 \text{ ft}^2 = 562.5$ Total cost: \$540.00 + \$918.00 = \$1518.75The client should choose Plan 1. 8. Convert the diameter of the coffee table from inches to feet. $28 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}} = 2.33 \text{ ft}$ Find the circumference of the coffee table. $C = \pi d$ $C = \pi(2.33)$ C = 7.33 ft Convert the diameter of the end table from inches to feet. $16 \text{ in} \times \frac{1 \text{ ft}}{12 \text{ in}} = 1.33 \text{ ft}$ Find the circumference of the end table. $C = \pi d$ $C = \pi(1.33)$ C = 4.19 ftAdd the circumferences to find the total length of laminate needed. 7.33 + 4.19 + 4.19 = 15.71One roll of laminate is 8 ft long, so the cabinet maker will buy two rolls. $2 \times \$8.89 = \17.78 The laminate will cost \$17.78. 9. $SA = \pi rs$

 $SA = \pi \left(3 \text{ ft } \times \frac{1 \text{ yd}}{3 \text{ ft}}\right) \left(5 \text{ ft } \times \frac{1 \text{ yd}}{3 \text{ ft}}\right)$ $SA = 5.24 \text{ yd}^2$ The planner would need to buy whole yards. $6 \text{ yd}^2 \times \$23.00 \text{ per yd}^2 = \138.00

10. Surface area of a cylinder (base and side, the top is open): $SA = \pi dh + \pi r^2$ $SA = \pi (1.5)(2.5) + \pi (0.75)^2$ $SA = 11.8 \text{ ft}^2 + 1.8 \text{ ft}^2$ $SA = 13.6 \text{ ft}^2$ Amount of paint needed for 2 coats on one pot: $2 \times 13.6 \text{ ft}^2 = 27.2 \text{ ft}^2$ $2 \text{ pots} = 54.4 \text{ ft}^2$

Yes, one can of paint is enough for the two pots.

11. Volume of bookend:

$$V_{l} = lwh$$

$$V_{l} = \left(2 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right) \left(8 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right) \left(4 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right)$$

$$V_{l} = 0.037 \text{ ft}^{3}$$

$$V_{2} = \left(2 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right) \left(4 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right) \left(4 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right)$$

$$V_{2} = 0.019 \text{ ft}^{3}$$

$$V_{3} = \left(2 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right) \left(4 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right) \left(6 \text{ in } \times \frac{1 \text{ ft}}{12 \text{ in}}\right)$$

$$V_{3} = 0.028 \text{ ft}^{3}$$

$$V_{total} = V_{l} + V_{2} + V_{3}$$

$$V_{total} = 0.037 \text{ ft}^{3} + 0.019 \text{ ft}^{3} + 0.028 \text{ ft}^{3}$$

$$V_{total} = 0.084 \text{ ft}^{3}$$

$$Cost:$$

$$(25 \times 2)(0.084 \text{ ft}^{3})(\$15.25/\text{ft}^{3}) = \$64.05$$

Part C: Extended Answer

12. a) Area of patio = πr^2 Area of patio = $\pi (3.5)^2$ Area of patio = 38.48 yd^2 b) Area of walkway = lwArea of walkway = $17 \text{ yd} \times 2 \text{ yd}$ Area of walkway = 34 yd^2 c) $38.48 \text{ yd}^2 + 34 \text{ yd}^2 = 72.48 \text{ yd}^2$ Cost of the paved area: $25.00/yd^2 \times 72.48 yd^2 = 1812.00$ d) Find the area of the backyard. A = lw $A = 25 \text{ yd} \times 9 \text{ yd}$ $A = 225 \text{ yd}^2$ Subtract the area of the pavement. $225 \text{ yd}^2 - 72.48 \text{ yd}^2 = 155.52 \text{ yd}^2$ Cost of the lawn area: $8.00/yd^2 \times 155.52 yd^2 = 1220.16$ e) Total cost: 1812.00 + 1220.16 = 3032.16.