Curriculum Outcome

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.

(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly:
"Powers of tens and the ZERO exponent"

Warm Up Grade 9

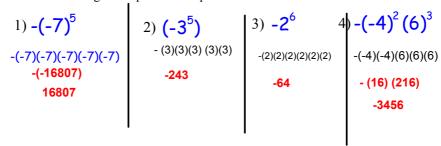
Write the following as a repeated multiple and evaluate

Write as a power then evaluate

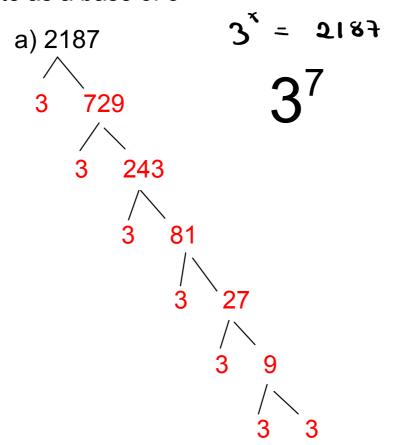
1)
$$(-4)(-4)(4)(4)(-5)(-5)$$
 2) $-(3)(3)(-7)(-7)(-7)$

$$(3)(3)(-7)(-7)(-7)$$

Write as a base of 3


a) 2187

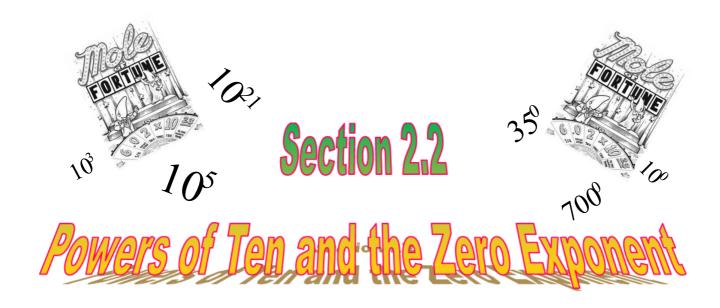
Warm Up Grade 9



Write the following as a repeated multiple and evaluate

Write as a power then evaluate

Write as a base of 3



Me again... Try these!

Page 56 #17ac,18,19,20,21,23 Worksheet (on next slide)

				Nan	ne	Date				
(N	Master 2.17 Extra Practice 1									
Le	SS	on 2.1: W	/hat Is a	a Power?						
1.	Identify the base of each power. a) 6^3 b) 2^7 c) $(-5)^4$ d) -7^0									
2.	Use repeated multiplication to show why 3^5 is not the same as 5^3 .									
3.	3. Complete this table.									
		Power	Base	Exponent	Repeated Multiplication	Standard Form				
		44								
		(-10)3								
			-6	2	1×1×1×1×1					
	Write each product as a power, then evaluate. a) 6×6 b) $3 \times 3 $									
6.	Evaluate each power. For each power: • Are the brackets needed? • If your answer is yes, what purpose do the brackets serve? a) (-6) ⁵ b) -(6) ⁵ c) -(-6) ⁵ d) (-6 ⁵)									
7.	Predict whether each answer is positive or negative, then evaluate. a) $(-3)^2$ b) $(-3)^3$ c) -3^2 d) $-(-3)^3$									
8.	Is the value of -2^4 different from the value of $(-2)^4$? Explain.									
9.	Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is \$60.00. a) Express the number of stamps as a power and in standard form. b) Use grid paper. Draw a picture to represent this power. c) What is the value of one stamp?									

Avogadro's number = 6.0221415×10^{23}

The speed of light = 2.99 792 458 × 10^8 m / s

Temperature of the Sun's Core = $1.5 \times 10^{\circ}$ C since 15000000 kelvin = 14999726.85 degree Celsius

Light years= $4.96 \times 10^{12} \text{ km}$

Distance related to Powers of 10 http://vimeo.com/819138

Any number (except 0) with an exponent 0 will equal 1

$$2^0 = 1$$

$$13^0 = 1$$

$$199^0 = 1$$

$$(-6)^0 = 1$$

Why???

Zero Exponent LAW

A power with a base not equal to zero, and an exponent of 0 is equal to 1

Any number raised to the power of ZERO is equal to 1

$$x^0 = 1$$

$$(2007)^{3} = 1$$
 $(-328)^{3} = 1$
 $-(-5)^{3} = -1$

Read this number to me

426

Four hundred Twenty Six

In elementary school you may have expressed it in this form

Powers of 10 page 59

Number in Words	Standard Form	Power
One billion	1 000 000 000	10 ⁹
One hundred million	100 000 000	108
Ten million	10 000 000	10 ⁷
One million	1 000 000	10 ⁶
One hundred thousand	100 000	10 ⁵
Ten thousand	10 000	10 ⁴
One thousand	1 000	10 ³
One hundred	100	10 ²
Ten	10	10 ¹
One	1 -	10 ⁰

*Image taken from "Math Makes Sense 9" page 59, copyright to pearson education Canada

Writing Numbers Using Powers of Ten

Write 96 713 as a power of 10

104	103	102	101	100	
10000	1000	100	10	1	
Ten Thousands	Thousands	Hundreds	Tens	Ones	
9	6	7	/	3	

Expanded form:

$$(9 \times 1000) + (6 \times 1000) + (7 \times 100) + (1 \times 10) + (3 \times 1)$$

Powers of ten form:

Powers of ten form:
$$(9 \times 10^4) + (6 \times 16^3) + (7 \times 10^2) + (1 \times 10^4) + (3 \times 10^6)$$

Write in powers of ten form:

$$(7 \times 10^6) + (6 \times 16^5) + (5 \times 10^3) + (4 \times 10^6) + (4 \times 10^6)$$

$$(5 \times 10^4) + (3 \times 10^2) + (4 \times 10^0)$$

Write in standard form:

PRACTICE TIME


```
# 4(a, b)
# 5(a, b, c, d)
# 6(a, c, e)
# 8( a, c, e)
# 9(a, c, e)
# 10 all
# 11
# 13
```