Curriculum Outcome

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.

(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly:

"Laws of exponents:

What happens to the exponent when you multiply like bases?"

Warm Up Grade 9

1) Write the following as a repeated multiple and evaluate

a)
$$(-3)^5$$

b)
$$-(-2)^3$$
 c) $-(-2)^6$ d) $-(3)^0(-4)^3$

2) Write as a power then evaluate

a)
$$-(2)(2)(2)(-3)(-3)(3)(3)$$

a)
$$-(2)(2)(2)(-3)(-3)(3)(3)$$
 b) $(-5)(-5)(4)(4)(4)(4)(4)$

3) Write the following as a powers of 10:

4) Write the following in standard form:

a)
$$(5 \times 10^4) + (9 \times 10^2) + (7 \times 10^1) + (6 \times 10^0)$$

Warm Up Grade 9

1) Write the following as a repeated multiple and evaluate

2) Write as a power then evaluate

a)
$$-(2)(2)(2)(-3)(-3)(3)(3)$$

b) $(-5)(-5)(4)(4)(4)(4)(4)$
 $= -(2)^3(-3)^2(3)^2$
 $= -(8)(9)(9)$
 $= -(25)(1024)$
 $= -648$
 $= 25(60)$

3) Write the following as a powers of 10:

a)
$$68706324^{-10}$$

$$(6\times10^{7}) + (8\times10^{6}) + (7\times10^{5}) + (6\times10^{3}) + (3\times10^{2}) + (2\times10^{1}) + (4\times10^{6})$$

4) Write the following in standard form:

a)
$$(5 \times 10^4) + (9 \times 10^2) + (7 \times 10^1) + (6 \times 10^0)$$

$$\frac{-15+3-13}{3\times2-7^0} = \frac{-25}{5} = -5$$

Order of Operations with Exponents

THERE IS A huge difference!

-5 ²	There			$(-5)^2$
$(-1)5^2$	is a negative		7-	(-5)(-5)
(-1)25	one being multiplied	\$ -5-1	(-5)	(-0)(-0)
-25	by the 5^2 .	TI	17	25

 $1. -4^2$

 $(-3)^2$

3. $(-2)^3$

BEDWHS

BEDMAS

$$-5^{2} + [4 + (-2)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

$$-5^{2} + [4 + (4)^{2} - 3]^{3}$$

Class/Homework

Page 66-68

SHOW WORK

```
3 (a, c, e)
4 (a, c, e, )
5 (e, g)
8 (a, c, e)
10(a,c,e)
15
16(acf)
```