Curriculum Outcome

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.

(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly:
"Learning the laws of Exponents"
Simplifying expressions before we try to evaluate them.

Fill in the following chart

Power	As Repeated Multiplication	As a Product of Factors	As a power
(3 ²) ⁵		3x5	310
(4 ²) ³	$= (4^{2}) (4^{2}) (4^{2})$ $= (4 \times 4) (4 \times 4) (4 \times 4)$	4 2x3	4
[(-2)4]3			

$$(2^3)^4 = 2^{12}$$
= 4096

Exponent Law for a Power of a Power

To raise a power to a power, multiply the exponents.

$$(a^m)^n = a^{mn}$$

Try this

Express the following as a single power

1)
$$(5^7)^5$$

1)
$$(5^7)^8$$
 2) $(10^2)^3$

3)
$$[(-2)^4]^3$$

Express the following as a single power then evaluate

1)
$$(2^3)^2$$

1)
$$(2^3)^2$$
 2) $(5^2)^3$

3)
$$[(-3)^2]^4$$

Fill in the following chart

Power	As Repeated Multiplication	As a Product of Factors	As a product of Powers
$(2^3 \times 3^2)^2$	$(2^{3} \times 3^{2}) (2^{3} \times 3^{2})$ $(2 \times 2 \times 2) \times (3 \times 3)$ $(2 \times 2 \times 2) \times (3 \times 3)$	23×2 × 32×2	26×34
((a) s) ²			
$((-3)\times5)^2$			

Exponent Law for a Power of a Product

$$(ab)^m = a^m b^m$$

$$\left(\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right)^{4} = \left(\begin{array}{ccc} & & \\ & & \\ & & \\ \end{array} \right) \left(\begin{array}{ccc} & & \\ & & \\ & & \\ \end{array} \right)$$

Try this Write as a power $3^{5} \times 4^{7} = 3^{30} \times 4^{41}$ $3^{5} \times 4^{7} = 3^{30} \times 4^{41}$ $3^{5} \times 4^{7} = 3^{30} \times 4^{30}$

Page 84

4, 5, 6, 7, 8, 9,