
Curriculum Outcome

G4 Solve problems that involve angle relationships between parallel, perpendicular and transversal lines.

G5 Demonstrate an understanding of angles, including acute, right, obtuse, straight and reflex, by: drawing, replicating and constructing, bisecting, and solving problems.

Student Friendly:

Angle Properties involving Parallel Lines and Transversal

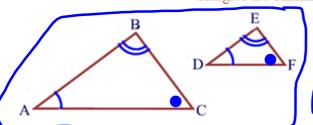
Similar Triangles

Triangles are said to be similar if they have the following properties...

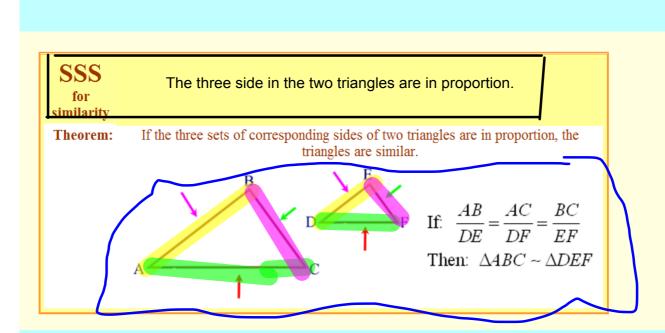
Property 1

Corresponding pairs of angles are equal

Property 2

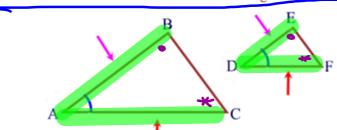

Corresponding pairs of sides are proportional

There are three accepted methods of proving triangles similar:


If two angles of one triangle are equal to two angles of and another triangle the triangles are similar.

Theorem: If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.

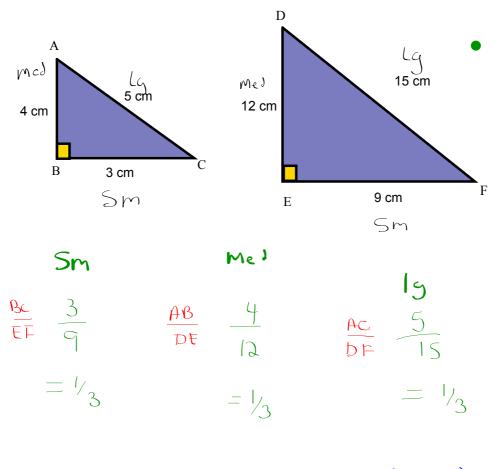
If:
$$\angle A \cong \angle D$$


Then: $\triangle ABC \sim \triangle DEF$

SAS for similarity Two sides in each triangle are proportionate and the angle between the two sides are equal in each triangle.

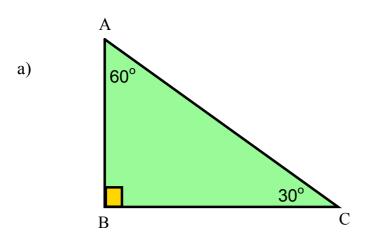
Theorem:

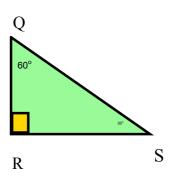
If an angle of one triangle is congruent to the corresponding angle of another triangle and the lengths of the sides including these angles are in proportion, the triangles are similar.



If: $\angle A \cong \angle D$

 $\frac{AB}{DE} = \frac{AC}{DF}$


Then: $\triangle ABC \rightleftharpoons \triangle DEF$


Prove Similarity

△ABC ~ △DEF (SSS)

Prove Similarity

$$\angle A = \angle Q$$

$$\angle B = \angle R$$

$$\angle C = \angle S$$

$$\frac{8}{4}$$

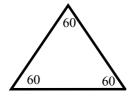
$$= 2$$

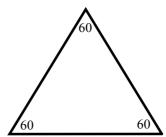
$$= 2$$

Remember

Triangles are said to be similar if they have the following properties...

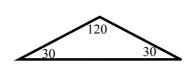
Property 1

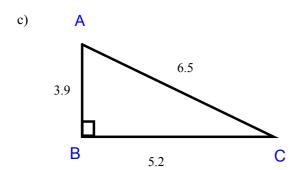

Corresponding pairs of angles are equal

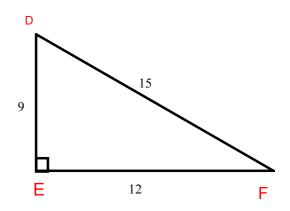

Property 2

Corresponding pairs of sides are proportional

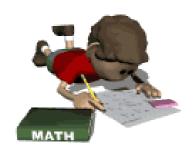
Are the triangles similar? Why or Why not?



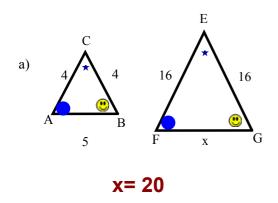


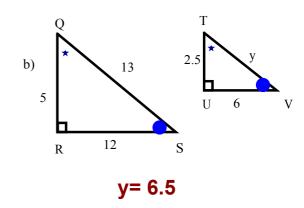


b)

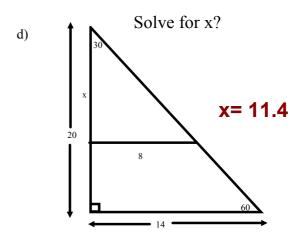


.




In class assignment

Similar Triangle Worksheet


This assignment was completed in class and then students started another assignment.

In class Assignment Exercise: Find the Unknown Side of the Similar Triangles

Solve the following proportions.

In class Assignment

a)
$$\frac{x}{3} = \frac{10}{5}$$
 b) $\frac{7}{x} = \frac{2}{3}$ c) $\frac{3}{4} = \frac{x}{8}$ d) $\frac{6}{5} = \frac{8}{y}$

b)
$$\frac{7}{x} = \frac{2}{3}$$

c)
$$\frac{3}{4} = \frac{x}{8}$$

d)
$$\frac{6}{5} = \frac{8}{y}$$

e)
$$\frac{4}{5} = \frac{12}{z}$$

f)
$$\frac{9}{2} = \frac{x}{4}$$

f)
$$\frac{9}{2} = \frac{x}{4}$$
 g) $\frac{x}{15} = \frac{3}{5}$ h) $\frac{5}{1} = \frac{x}{3}$

h)
$$\frac{5}{1} = \frac{x}{3}$$

$$i)\frac{3}{r} = \frac{18}{24}$$

$$j)\frac{4}{3} = \frac{8}{x}$$

$$j)\frac{4}{3} = \frac{8}{x}$$
 $k)\frac{x}{2} = \frac{10}{5}$ $l)\frac{6}{x} = \frac{10}{25}$

$$1)\frac{6}{x} = \frac{10}{25}$$

$$m)\frac{8}{x} = \frac{6}{3}$$

$$n)\frac{5}{3} = \frac{45}{x}$$

o)
$$\frac{2.5}{r} = \frac{2}{7}$$

n)
$$\frac{5}{3} = \frac{45}{x}$$
 o) $\frac{2.5}{x} = \frac{2}{7}$ p) $\frac{x}{12.5} = \frac{.8}{4}$

Similar Triangles.docx