September 27, 2017 continued

UNIT 2: POWERS AND EXPONENT LAWS

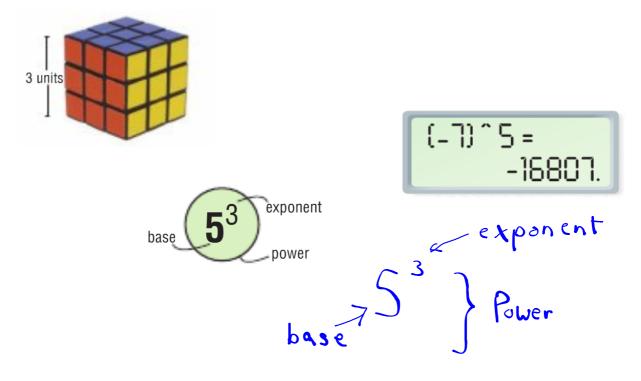
SECTION 2.1: WHAT IS A POWER?

K. Sears
MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

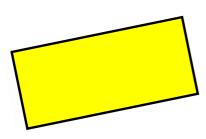
We will begin working on the Math 9 Specific Curriculum Outcome (SCO) "Numbers 1" OR "N1" which states:

"Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers."



What does THAT mean???

SCO N1 means that we will learn about the two parts of a power (the base, or "the big number", and the exponent, or "the little number"). We will show what a power means when we write it out using multiplication (ex: $3^2 = 3 \times 3$), and we will use patterns to prove, for example, that $3^0 = 1$. Finally, we will use what we know about powers to solve problems.



UNIT 2: POWERS AND EXPONENT LAWS

UNIT 2: VOCABULARY

1. POWER:

an expression in the form of an, where a is the base and n is the exponent; it represents a product of equal factors.

ex.:
$$4 \times 4 \times 4 = 4^3$$

2. SQUARE NUMBER: a number that can be written as a power with an integer base and an exponent of 2.

ex.:
$$49 = 7^2$$

(49 is a square number)

3. CUBE NUMBER: a number that can be written as a power with an integer base and an exponent of 3.

ex.:
$$8 = 2^3$$

(8 is a cube number)

125 CAN BE WRITTEN SEVERAL WAYS:

1. Standard Form: 125

2. As repeated multiplication: $5 \times 5 \times 5$

3. As a **POWER**: 5³

(What kind of a number is 125? Think of definition #3...)

PLEASE TURN TO PAGE 53 IN MMS9. LOOK AT EXAMPLE 1 - WRITING POWERS.

How would I write the following examples as POWERS?

1.
$$6 \times 6 \times 6 \times 6 \times 6 =$$

2.
$$8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8 = 8^{7}$$

PLEASE TURN TO PAGE 54 IN MMS9. LOOK AT EXAMPLE 2 - EVALUATING POWERS.

How would I write the following examples as repeated multiplication and in standard form?

1.
$$2^6 = 2x2x2x2x2x2$$

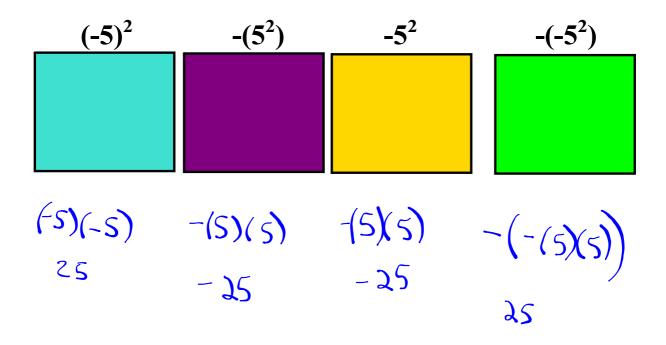
= 64

Let's talk about the ways in which we can use our calculators to evaluate powers.

There are 4 possible ways that I know of. Please let me know if there are others.)

- 1. xy
- 2. yx
- 3.
- 4. **x**

Examples 1 and 2 on pages 53 and 54 showed powers with positive integer bases; however, a power can also be negative or have a base that is a negative integer.


$$(-3)^{6} = 729$$

$$(-3)^{6} = 729$$

$$-3^{6} = -729$$

$$-(3)^{6}(-$$

WHAT IS THE DIFFERENCE BETWEEN...

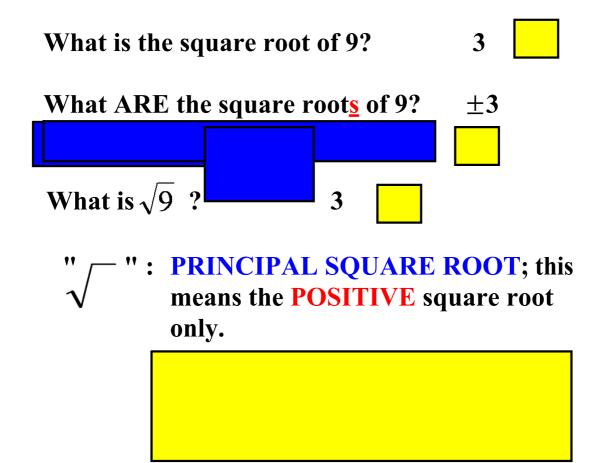
DEALING WITH NEGATIVE BASES ON YOUR CALCULATOR:

Examples:

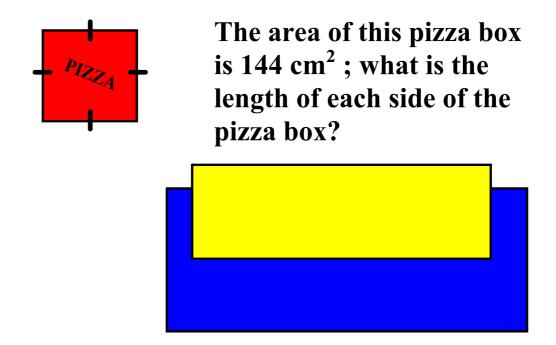
1.
$$(-2)^3 = -\sqrt{2}$$

2.
$$(-2)^6 = 64$$

3.
$$(-4)^2$$


4.
$$(-4)^5$$

$$= - 1024$$


PLEASE TURN TO PAGE 54 IN MMS9. LOOK AT EXAMPLE 3 - EVALUATING EXPRESSIONS INVOLVING NEGATIVE SIGNS.

Identify the base in each of these powers, then evaluate the power.

1. -5⁴: Base =
$$5$$

Repeated Multiplication = $-5 \times 5 \times 5 \times 5$
Standard Form = -625

An example where **ONLY** the **PRINCIPAL** square root is appropriate:

CONCEPT REINFORCEMENT:

MMS9:

PAGE 55: #7, 8 and 9

PAGE 56: #11, 12, 13, 14 and 16

PAGE 57: #18, 19, 20 and 21a