Exercise

Complete the table

	Ν	W	I	Q	Q	R
5						
-2						
3			•			
4				<u> </u>		
-1.3						
$\sqrt{7}$					/	
√9.5					>	

4.2 Irrational Numbers

LESSON FOCUS

Identify and order irrational numbers.

Make Connections

The formulas for the area and circumference of a circle involve π , which is not a rational number because it cannot be written as a quotient of integers.

What other numbers are not rational?

When an irrational number is written as a radical, the radical is the exact value.

When we use the square root or cube root key on our calculators we are obtaining approximate value of irrational numbers.

Example 1 Classifying Numbers

Tell whether each number is rational or irrational. Explain how you know.

a)
$$-\frac{3}{5}$$

c)
$$\sqrt[3]{\frac{8}{27}}$$

SOLUTION

a) $-\frac{3}{5}$ is rational since it is written as a quotient of integers.

Its decimal form is -0.6, which terminates.

b) $\sqrt{14}$ is irrational since 14 is not a perfect square.

The decimal form of $\sqrt{14}$ neither repeats nor terminates.

c)
$$\sqrt[3]{\frac{8}{27}}$$
 is rational since $\frac{8}{27}$ is a perfect cube.

$$\sqrt[3]{\frac{8}{27}} = \frac{2}{3}$$
 or $0.\overline{6}$, which is a repeating decimal

4.2 Irrational Numbers

Example 2 Ordering Irrational Numbers on a Number Line

Use a number line to order these numbers from least to greatest.

$$\sqrt[3]{13}$$
, $\sqrt{18}$, $\sqrt{9}$, $\sqrt[4]{27}$, $\sqrt[3]{-5}$

SOLUTION

13 is between the perfect cubes 8 and 27, and is closer to 8.

Use a calculator.

$$\sqrt[3]{13} = 2.3513...$$

3∜(13)

2.351334688

18 is between the perfect squares 16 and 25, and is closer to 16.

$$\begin{array}{cccc}
\sqrt{16} & \sqrt{18} & \sqrt{25} \\
\downarrow & \downarrow & \downarrow \\
4 & ? & 5
\end{array}$$

(Solution continues.)

4.2 Irrational Numbers

Example 2

Ordering Irrational Numbers on a Number Line

Use a calculator.

$$\sqrt{18} = 4.2426...$$

$$\sqrt{9} = 3$$

27 is between the perfect fourth powers 16 and 81, and is closer to 16.

$$\sqrt[4]{16}$$
 $\sqrt[4]{27}$
 $\sqrt[4]{81}$
 $\sqrt[4]{2}$
 $\sqrt[4]{3}$

Use a calculator.

$$\sqrt[4]{27} = 2.2795...$$

4∜(27)

*2.2*19501051

-5 is between the perfect cubes -1 and -8, and is closer to -8.

$$\sqrt[3]{-1}$$
 $\sqrt[3]{-5}$
 $\sqrt[3]{-8}$
 $\sqrt[4]{-1}$
 $\sqrt[7]{-2}$

Use a calculator.

$$\sqrt[3]{-5} = -1.7099...$$

3∛(-5)

-1.709975947

(Solution continues.)

4.2 Irrational Numbers

Classwork/Homework

Textbook:

Page 211

Questions 3, 4, 10(just use your calculator),

13, 14, 15, 17, 18ab, 20