Review from last day...

Ways to represent relations

Representing Relations

What are some of the most common means of describing mathematical relations?

- (1) Verbally
- (2) Ordered Pairs
- (3) Table of Values
- (4) Arrow Diagram
- (5) Graph
- (6) Equation

Domain - the set of first elements in a relation

Range - the set of second elements in a relation

Input	Output
1	5
2	7
	9
4	
	13

Sport	Equipment	
badminton	shuttlecock	
badminton	racquet	First Second
hockey	puck	
hockey	stick	
tennis	ball	(Sport, Equipment)
tennis	racquet	(Sport, Equipment)
soccer	ball	

The set of first elements: { badminton, hockey, tennis, soccer}

The set of second elements: { shuttlecock, racquet, puck, stick, ball}

$$\{a,a\}$$
 $\{1,a\}$ $\{-3,5\}$, $\{-2,1\}$, $\{5,8\}$

Domain: { -3, -2,1,2,5}

Range: 21,2,5,83

Domain

The **domain** represents all the values of x.

Range

The **range** represents all the values of y.

Y is the dependent Variable

What is the independent variable...x or y?

Function or Nonfunction

Function:

A relation where each element in the first set is associated with <u>one and only one</u> element in the second set.

Functions

How can I tell from a set of points/table?

"an x value has more than one y value"

- a function is a relation in which no two ordered pairs have the same first coordinate.

X	У
3	5
7	11
8	15
9	22

Arrow Diagrams

Function:

For every first element there is one and only one second element. (Only one arrow starts from each element of the domain.)

Sport	Equipment
badminton	shuttlecock
badminton	racquet
hockey	puck
hockey	stick
tennis	ball
tennis	racquet
soccer	ball

$\{(2,5),(3,7),(4,2),(2,6),(8,0)\}$

Function or Nonfunction

- ** To determine whether or not a graph is a function or nonfunction, we use what is called the vertical line test!!
- ** If the line crosses the graph more than once at any particular location, then it is not a function.

Function

Nonfunction

** State whether the graph is a function or nonfunction, as well as stating the domain & range!!

Function Type: function

Domain: {-10 ≤ x ≤ 3}

Range: {-4 - 4 - 8

Use the Vertical Line Test to see if the graph is a function

5. a) function
$$D = \{1, 2, 3, 4\}$$

$$R = \{3, 6, 9, 12\}$$

Independent Dependent

Dependent

 a variable whose value is determined by the value of another(independent) variable.

Independent

 a variable whose value is not determined by the value of another variable, and whose value determines the value of another (dependent) variable

Independent Variable

 Hours do not depend on the person's pay.

Hours Worked, h	Gross Pay, P (\$)
1	12
2	24
3	36
4	48
5	60

Dependent Variable

 A person's pay often depends on the number of hours worked.

Number of Marbles, n	Mass of Marbles, m (g)
1	1.27
2	2.54
3	3.81
4	5.08
5	6.35
6	7.62

- a) State the domain & Range.
- b) Is this relation a function?
- c) State the dependent and independent variables.
- d) Write the function notation.

Solution: to page 267 check understanding

- a) Domain: { 1, 2, 3, 4, 5 } Range: {1.75, 3.50, 5.25, 7.00, 8.75 }
- b) Function
- c) Independent number of ticketsDependent Cost
- d) C(n) = 1.75 n

Hours Worked, h	Gross Pay, P (\$)
1	12
2	24
3	36
4	48
5	60

See page 267

Let's write the function notation

$$P(h) = 12h$$

What is the person's pay after 20 hours?

$$P(20) = 12(20)$$

$$P(20) = $240$$