April 27, 2018

UNIT 8: CIRCLE GEOMETRY

8.2: PROPERTIES OF CHORDS IN A CIRCLE

K. Sears
MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 1" OR "SS1" which states:

- "Solve problems and justify the solution strategy using circle properties, including:
- * the perpendicular from the centre of a circle to a chord bisects the chord;
- * the measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc;
- * the inscribed angles subtended by the same arc are congruent;
- * a tangent to a circle is perpendicular to the radius at the point of tangency."

WARM UP QUIZ:

(sketch and use the diagram to the right)

COPY AND ANSWER:

- 1. The tangent is line _____.
- 2. The <u>centre</u> of the circle is labeled .
- 3. The point of tangency is labeled _____.
- 4. The radius is line _____.
- 5. If OW is 17 cm and SW is 9 cm, what is the length of the radius to the nearest tenth?

HOMEWORK QUESTIONS? (Pages 388/89/90/91, #3, 5, 6, 7, 9, 11, 12, 13, 14, 17, 18, 19, 20 & 22)

VOCABULARY:

1. CHORD: A line segment that joins two points on a circle. (A diameter of a circle is actually a special chord through the centre of the circle.)

VOCABULARY:

2. PERPENDICULAR BISECTOR: Intersects a line segment at 90° and divides the line segment into two equal parts.

PQ = chord (line segment)
SR = perpendicular
bisector of PQ;
therefore, PR = QR.

VOCABULARY:

3. PERPENDICULAR TO CHORD PROPERTY 1 (PCP): The perpendicular from the centre of a

circle to a chord bisects the chord.

$$\stackrel{\bullet}{\bullet}$$
 PR = QR (PCP)

VOCABULARY:

4. PERPENDICULAR TO CHORD PROPERTY 2 (PCP): The perpendicular bisector of a chord in a circle passes through the centre of the circle.

$$\bullet$$
 O = centre of the circle (PCP)

PCP 2 - Taking it Further

(You do not have to copy this - it is not used in grade 9 math; however, you may have to know this if you take more math courses after high school.)

To actually determine the location of the centre of a circle using PCP 2, two chords are drawn as well as their perpendicular bisectors. The point at which the two perpendicular bisectors intersect is the centre of the circle.

VOCABULARY:

5. PERPENDICULAR TO CHORD PROPERTY 3 (PCP): A line that joins the centre of a circle to the midpoint of a chord is perpendicular to the chord.

PR = QR (given)
O = centre of the circle (given)
PRO = <QRO = 90° (PCP)

If you have 2 then you weets 90. automatically have the third bisects

1.

centerv Perpendicular 1. bisects

Bistchse ? Perpendicular

Perpendicular : Goes through Genter

Aren't they all saying the same thing?

There are 3 pieces to the Perpendicular to Chord Property puzzle:

The perpendicular bisector of a chord in a circle passes through the centre of the circle, intersects with the chord at a 90° angle and cuts the chord into two equal pieces.

As long as you have 2 of the pieces of the puzzle, you automatically know the third.

VOCABULARY:

PERPENDICULAR TO CHORD PROPERTY 4 (PCP):

(Again, you do not have to copy this - it is not used in grade 9 math; however, you may have to know this if you take more math courses after high school.)

Two chords that are an equal distance from the centre of a circle are congruent.

VOCABULARY:

6. ISOSCELES TRIANGLE THEOREM (ITT): The two angles that are opposite to the two congruent sides in an isosceles triangle are also congruent.

If:
$$\overline{AB} \cong \overline{AC}$$

then: $\angle B \cong \angle C$

Determining the Measure of Angles in a Triangle

Example: Determine the values of x° and y° in the diagram below.

Using the Pythagorean Theorem in a Circle

Example: What is the length of chord CD to the nearest tenth?

$$A^{2} = (^{2} - b^{2})^{2}$$

$$= (3^{2} - 10^{2})^{2}$$

$$= 169 - 100$$

$$= 69$$

$$A = \sqrt{69}$$

$$= 8.3$$

$$CD = 2(8.3)$$

$$= 16.6 \text{ cm}$$

ANSWER: 16.6 cm

Solving Problems Using the Property of a Chord and its Perpendicular

Example: Determine the length of CD in the diagram below.

$$0D = 20$$
 (radius) given
 $0C = X$
 $0C = X$
 $0C = X$
 $0C = X$
 $0C = 20^{2}$
 $0C = 20^{2}$

CONCEPT REINFORCEMENT:

MMS9:

PAGE 397: #3 TO #6

PAGE 398: #7 TO #12 [10(a) = 3.5]

PAGE 399: #13, 14, 15, 17, 18 & 19

PAGE 403: #4 TO #7

PAGE 419: #5 TO #8