APRIL 16, 2018

UNIT 7: SIMILARITY AND TRANSFORMATIONS

7.3: SIMILAR POLYGONS

K. Sears
MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Shape and Space 3" OR "SS3" which states:

"Demonstrate an understanding of similarity of polygons."

WARM UP QUIZ:

- a) Prove that these2 trianglesare similar.
- b) Find the height of the tree to the nearest tenth of a metre.

At a certain time of the day, the shadow of a 5' boy is 8' long. The shadow of a tree at this same time is 28' long.

HOMEWORK QUESTIONS?

(pages 350 / 351, #9 to #15)

 $\frac{415.}{45m}$ $\frac{y}{16m} = \frac{27}{45}$ $\frac{x}{16} = \frac{12}{45}$ $y = \frac{27}{16}$ 45 $y = \frac{27}{16}$ 45 $x = \frac{12}{16}$ $x = \frac{12}{16}$ x =

Activity

(Label your second polygonIJKLMNOP counterclockwise from the top left corner.)

Activity

(Label your second polygonIJKLMNOP counterclockwise from the top left corner.)

Activity

(Label your second polygonIJKLMNOP counterclockwise from the top left corner.)

SIMILAR POLYGONS

TO IDENTIFY SIMILAR POLYGONS:

* the measures of corresponding anglesmust be EQUAL

* the ratios of the lengths of the correspondingsides must be EQUAL; in other words, corresponding sides are proportional

EXAMPLE: PROVE that quadrilateral ABCD is SIMILAR TOquadrilateral PQRS.

∴ quadrilateral ABCD ~ quadrilateral PQRS

EXAMPLE:

Identify pairs of similar rectangles. Justify the answer.

We are told that these shapes are rectangles. All Identify pairs of similar rectangles. Justify the answer.

angles in a rectangle measure 90; therefore, we do not have to "prove" anything about the angles it is "given" that these shapes are rectangles.

We also know that rectangles have two pairs of congruent sides; therefore, the only thing we need to "prove" are the ratios of two pairs of corresponding sides are equal.

∴ rectangle EFGH ~ rectangle JKMN

EXAMPLE 2:

These 2 octagonal garden plots are <u>SIMILAR</u>. Calculate

the length of GH and NP.

$$\frac{x}{32.4} = \frac{5.4}{8.1}$$

$$x = \frac{5.4(32.4)}{8.1}$$

$$= 21.6 \text{ m}$$

$$\frac{GH}{PQ} = \frac{AB}{IJ}$$

$$\frac{x}{32.4} = \frac{5.4}{8.1}$$

$$8.1x = 174.96$$

$$x = 21.6 \text{ m}$$

$$\frac{NP}{FG} = \frac{IJ}{AB}$$
 $\frac{y}{27.0} = \frac{8.1}{5.4}$
 $5.4y = 218.7$
 $y = 40.5 \text{ m}$

WARM UP:

Which two trapezoids are similar? Show all work.

∴ trapezoid EFGH ~ trapezoid IJKL

CONCEPT REINFORCEMENT:

MM59:

PAGE 341: #4, #5 & #9

PAGE 342: #13

PAGE 352: #5(a)

PAGE 377: #6

PAGE 378: #8