Curriculum Outcomes:

(SS3) Demonstrate an understanding of similarity of polygons.

(SS4) Draw and interpret scale diagrams of 2-D shapes.

(SS5) Demonstrate an understanding of line and rotation symmetry.

Student Friendly:

How are diagrams related in size? To increase a length by a certain number be it a fraction or a whole number.

1) Determine the scale factor of the following:

- 2) Determine the unknown lengths for the following
 - a) If the scale factor is 1/5

3)Solve the following Ratios for the unknown variable:

$$\frac{4}{5} = \frac{x}{12.5}$$

$$\frac{4(12.5)}{5} = \chi$$

$$\frac{3}{8} = \frac{16}{9}$$
 $\frac{3}{8} = \frac{16}{9}$
 $\frac{3}{8} = \frac{8(16)}{3}$
 $\frac{3}{8} = \frac{8(16)}{3}$
 $\frac{3}{8} = \frac{8(16)}{3}$

$$n = 90^{\circ}$$
 $m = 180^{\circ} - 90^{\circ} - 17^{\circ}$
 $m = 53^{\circ}$

$$t = 37^{\circ}$$
 (iso 4)
 $P = 53^{\circ}$

$$a^{2} + b^{2} = c^{2}$$

$$b^{2} = c^{2} - a^{2}$$

$$b^{2} = 5^{2} - 3^{2}$$

$$b^{3} = 25 - 9$$

$$\sqrt{b^{2}} = \sqrt{16}$$

$$b = 4$$

316 UNIT 7: Similarity and Transformations

$$BD = 4 cm$$
So, $BC = 2 \times 4 cm$

$$= 8 cm$$

I know that the sum of the angles in a triangle is 180°.

Sc C. Z

My menu janene snowed me a different way to calculate.

She recalled that the line AD is a line of symmetry for an isosceles triangle.

So, ΔABD is congruent to ΔACD .

This means that $\angle BAD = \angle CAD$

Janelle calculated the measure of \angle BAD in \triangle ABD.

Check

- 1. Calculate the measure of each angle.
 - a) ZACB

b) ∠GEF and ∠GFE

c) \angle HJK and \angle KHJ

Definition:

Two triangles are **similar** if and only if the corresponding sides are in proportion and the corresponding angles are congruent.

There are three accepted methods of proving triangles similar:

AA

Angle. Angle

Theorem: If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.

Then: $\triangle ABC \sim \triangle DEF$

for similarity

Side, side, side

Theorem: If the three sets of corresponding sides of two triangles are in proportion, the triangles are similar.

SAS for similarity

Side, Angle, Side

Theorem:

If an angle of one triangle is congruent to the corresponding angle of another triangle and the lengths of the sides including these angles are in proportion, the triangles are similar.

If:
$$\angle A \cong \angle D$$

$$\frac{AB}{DE} = \frac{AC}{DF}$$

Then: $\triangle ABC \sim \triangle DEF$

at

Let's Compare sides

Set up ratios of sides

Once the triangles are similar:

Theorem:

The corresponding sides of similar triangles are in proportion.

If: $\triangle ABC \sim \triangle DEF$ Then: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

Dealing with overlapping triangles:

Many problems involving similar triangles have one triangle ON TOP OF (overlapping) another triangle. Since \overline{DE} is marked to be parallel to \overline{AC} , we know that we have $<\!BDE$ congruent to $<\!DAC$ (by corresponding angles). $<\!B$ is shared by both triangles, so the two triangles are similar by AA.

There is an additional theorem that can be used when working with overlapping triangles:

Additional If a line is parallel to one side of a triangle and intersects the other two sides of

Theorem: the triangle, the line divides these two sides proportionally.

 $\mathit{If}:\ \overline{\mathit{DE}}\,||\,\overline{\mathit{AC}}$

Then: $\frac{BD}{DA} = \frac{BE}{EC}$