Curriculum Outcomes:

(SS3) Demonstrate an understanding of similarity of polygons.

(SS4) Draw and interpret scale diagrams of 2-D shapes.

(SS5) Demonstrate an understanding of line and rotation symmetry.

Student Friendly:

How are diagrams related in size? To increase a length by a certain number be it a fraction or a whole number.

<u>Polygons</u> are 2-dimensional shapes. They are made of straight lines, and the shape is "closed" (all the lines connect up).

Activity

Lets double the size of this shape

Activity

Original

Length of sides (cm)	AB 7	BC 3	CD 3	DE	EF 3	FG 2	<u>GН</u> 5	НА
Measure of Angle	< A	<b< td=""><td><c _<="" td=""><td><Ď</td><td><e< td=""><td><f< td=""><td><g< td=""><td><h< td=""></h<></td></g<></td></f<></td></e<></td></c></td></b<>	<c _<="" td=""><td><Ď</td><td><e< td=""><td><f< td=""><td><g< td=""><td><h< td=""></h<></td></g<></td></f<></td></e<></td></c>	<Ď	<e< td=""><td><f< td=""><td><g< td=""><td><h< td=""></h<></td></g<></td></f<></td></e<>	<f< td=""><td><g< td=""><td><h< td=""></h<></td></g<></td></f<>	<g< td=""><td><h< td=""></h<></td></g<>	<h< td=""></h<>
(degrees)	70° ~	-90°	90°	270°	270°	90°	90°	110°

Doubled

Length of sides (cm)	1J 14	JK 6	KL 6	LM 2	MN 6	NO 4	OP 10	PI
Measure of Angle (degrees)	< <u>I</u>	<j< td=""><td><k< td=""><td><<u>L</u></td><td><m< td=""><td><n< td=""><td><o< td=""><td><p< td=""></p<></td></o<></td></n<></td></m<></td></k<></td></j<>	<k< td=""><td><<u>L</u></td><td><m< td=""><td><n< td=""><td><o< td=""><td><p< td=""></p<></td></o<></td></n<></td></m<></td></k<>	< <u>L</u>	<m< td=""><td><n< td=""><td><o< td=""><td><p< td=""></p<></td></o<></td></n<></td></m<>	<n< td=""><td><o< td=""><td><p< td=""></p<></td></o<></td></n<>	<o< td=""><td><p< td=""></p<></td></o<>	<p< td=""></p<>
(uegrees)	70°	90°	90°	270°	270°	90°	90°	110°

Look at side comparison

$$\frac{IJ}{AB} = \frac{14}{7} = 2$$

$$\frac{JK}{BC} = \frac{6}{3} = 2$$

and so on....

BUT THE ANGLESBETWEEN SCALED SIDES ARE THE SAME <u>Similar Polygons</u> are enlargements or reductions of each other : Same shape, but not necessarily the same size

Corresponding: similar in position or purpose
: the same size; reduced or enlarged
- between same scaled sides

Properties of Similar Polygons

Their corresponding angles are <u>equal</u>
Their corresponding sides are proportional

BOTH MUST BE TRUE

Symbol for similar is \sim

Are the following Similar Polygons?

Step1) Match up the Angles
$$\angle D = \angle n$$

 $\angle H = \angle Q$
 $\angle G = \angle P$
 $\angle F = \angle Q$

Step 2) Match up sides and compare their ratio

Big over Small

But doesn't matter just ratio must be the same in order to be similar

Put in the Values

$$\frac{12}{18} = \frac{4}{6} = \frac{7}{10.5} = \frac{15}{215} = \frac{14}{21}$$

$$\frac{15}{215} = \frac{14}{21} = \frac{15}{215} = \frac{14}{21} = \frac{14}{21} = \frac{14}{21} = \frac{14}{21} = \frac{14}{21} = \frac{15}{21} = \frac{14}{21} = \frac{$$

Solving Problems Using the Properties of Similar Polygons

Example 1)

Assume similarity

Find the length of the side labled "x"

$$\frac{\chi}{8.4} = \frac{10.5}{12.6}$$

$$\chi = 10.5 (8.4)$$
12.6

$$\chi = 7$$

Solving Problems Using the Properties of Similar Polygons

Assume similarity

These two polygons are similar.

- a) Calculate the length of VO.
- b) Calculate the length of AT

$$\frac{\chi}{23.8} = \frac{4.4}{14.96}$$

$$X = 4.4(23-8)$$

$$14.96$$

$$\frac{9}{5} = \frac{14.96}{4.4}$$

Class/Homework

Page 341 - 342

4, 5, 6 9 Show work 11 Show work 13, Show work

