Notes - Geometry Theorems.doc

*** Now that the notes are taken care of...

REVIEW??? GMF 10 - Angle Properties

We better do some examples to <u>UNDERSTAND</u> these **BIG** ideas!!!

Geometry Theorems...

• Complementary Angles: (AT

Two or more angles that have a sum of 90°.

Examples:

- (1) What is the complement of a 50° angle? 70°
- (2) Determine the measure of the missing angle.

• Supplementary Angles:

Two or more angles that have a sum of 180°.

SAT

Examples:

Opposite Angle Theorem...

When 2 straight lines cross, 2 pairs of opposite angles are formed. Opposite angles are equal in size

In geometry, angles or lines marked with the same symbol are the same size.

Example:

EXERCISE: Use geometry theroems to determine the measure of missing angles...

Parallel Line Theorems

A transversal is a third line that crosses two or more lines, as shown in the illustration to the right.

parallel lines a transversal

Corresponding Angles: $\left(\left(A \right) \right)$

Pairs of angles on the same side of a transversal and the same side of the parallel lines

CORRESPONDING ANGLES ARE EQUAL

Alternate Interior Angles:

Pairs of angles on the opposite sides of a transversal and between the parallel lines

parallel lines

6
5
7
8
a transversal

ALTERNATE INTERIOR ANGLES ARE EQUAL

AIA

Co-Interior Angles (Same-side Interior):

Pairs of angles on the same side of a transversal and between the parallel lines

(IA

parallel lines

6 5

7 8

a transversal

CO-INTERIOR ANGLES ARE SUPPLEMENTARY

EXERCISE: Practice...

- 1. <3 and < _____ are corresponding angles.
- 2. <4 and $<\underline{}$ are alternate interior angles.
- 3. <5 and < \(\frac{1}{2}\) are same-side interior angles.

1.
$$m < l = \frac{\sqrt{50}}{40}$$

3.
$$m < 3 = 48$$

4.
$$m < 4 = \frac{132}{144}$$

5.
$$m < 5 = \frac{48}{42}$$

6. $m < 6 = \frac{42}{42}$

p. 76

EXAMPLE 2 Using reasoning to determine unknown angles

Determine the measures of *a*, *b*, *c*, and *d*.

$$Q = 1/0.$$

Kebeh's Solution

$$\angle a = 110^{\circ}$$

The 110° angle and $\angle a$ are corresponding. Since the lines are parallel, the 110° angle and $\angle a$ are equal.

$$\angle a = \angle b$$

 $\angle b = 110^{\circ}$

Vertically opposite angles are equal.

 $\angle c$ and $\angle a$ are interior angles on the same side of a transversal. Since the lines are parallel, $\angle c$ and $\angle a$ are supplementary. I updated the diagram.

 $\angle c = \angle d$

$$\angle d = 70^{\circ}$$

 $\angle c$ and $\angle d$ are alternate interior angles. Since the lines are parallel, $\angle c$ and $\angle d$ are equal.

The measures of the angles are:

$$\angle a = 110^{\circ}; \angle b = 110^{\circ};$$

$$\angle c = 70^{\circ}; \angle d = 70^{\circ}.$$

Homework...

Assignment - Angle Properties.pdf

p. 72: #2

p. 78: #1, 4, 15

Notes - Geometry Theorems.doc

Assignment - Angle Properties.pdf