Assignment - Angle Properties.pdf

Solutions...

Homework...

Questions

p. 72: #2

p. 78: #1, 4, 15

Using reasoning to solve problems JUSTIFY!!!

Tyler's Solution

MN is a transversal of parallel lines LQ and NP. ------ MN intersects parallel lines LQ and NP.

$$\angle MNO + 20^{\circ} = 67^{\circ}$$
 $\angle MNO = 47^{\circ}$
Since \angle angles

Since $\angle LMN$ and $\angle MNP$ are alternate interior angles between parallel lines, they are equal.

$$\angle NMO + \angle MNO + 39^{\circ} = 180^{\circ}$$

 $\angle NMO + (47^{\circ}) + 39^{\circ} = 180^{\circ}$
 $\angle NMO + 86^{\circ} = 180^{\circ}$
 $\angle NMO = 94^{\circ}$

The measures of the angles in a triangle add to 180°.

$$\angle NMO + \angle QMO + 67^{\circ} = 180^{\circ}$$

 $(94^{\circ}) + \angle QMO + 67^{\circ} = 180^{\circ}$
 $161^{\circ} + \angle QMO = 180^{\circ}$
 $\angle QMO = 19^{\circ}$

 $\angle LMN$, $\angle NMO$, and $\angle QMO$ form a straight line, so their measures must add to 180°.

The measures of the angles are:

$$\angle MNO = 47^{\circ}; \angle NMO = 94^{\circ}; \angle QMO = 19^{\circ}.$$

Geometric Proofs... The 'Two-Column Proof'

Key Terms (in your notes)...

Notes - Chp. 2.pdf

deductive reasoning

Drawing a specific conclusion through logical reasoning by starting with general assumptions that are known to be valid.

proof

A mathematical argument showing that a statement is valid in all cases, or that no counterexample exists.

transitive property

If two quantities are equal to the same quantity, then they are equal to each other. If a = b and b = c, then a = c.

two-column proof

A presentation of a logical argument involving deductive reasoning in which the statements of the argument are written in one column and the justifications for the statements are written in the other column.

STATEMENT	JUSTIFICATION
-	_

***ADD this one to your notes...

converse

A statement that is formed by switching the premise and the conclusion of another statement.

EXAMPLES...

PREMISE -> CONCLUSION

Conjecture: If it is raining outside, then the grass is wet.

CONVERSE: If the grass is wet, then it is raining.

THEOREM: If you have parallel lines, then the corresponding angles are equal.

CONVERSE: If the corresponding angles are equal, then the lines are parallel.

p. 29

Using deductive reasoning to prove a geometric conjecture

Prove that when two straight lines intersect, the vertically opposite angles are equal.

Jose's Solution: Reasoning in a two-column proof

Statement	Justification	<u> </u>
$\angle AEC + \angle AED = 180^{\circ}$	Supplementary angles	⁻ 5A1
$\angle AEC = 180^{\circ} - \angle AED$	Subtraction property	
$\angle BED + \angle AED = 180^{\circ}$	Supplementary angles	5A1
$\angle BED = 180^{\circ} - \angle AED$	Subtraction property	
$\angle AEC = \overline{\angle BED}$	Transitive property	,

Example #2:

In $\triangle EFG$, GI bisects $\angle FGH$ Carollel

a) If $\angle E = \angle y$, then prove that $EF \parallel GI$

Statement Justification

Ly = Lz

Bisect

Given

LE = Ly

LE = Lz

Fransitive

A

In $\triangle EFG$, GI bisects $\angle FGH$

b) If $\angle F = \angle z$, then prove that $EF \parallel GI$

Homework...

p. 72: #4-6

p. 78: #2, 8, 10, 12, 20

Assignment - Angle Properties.pdf

Notes - Chp. 2.pdf