Homework... Questions?

p. 72: #4-6

p. 78: #2, 8, (10)(12), (20)

10. Jason wrote the following proof.

Identify his errors, and correct his proof.

Given:

$$QP \perp QR$$

$$QR \perp RS$$

$$QR \parallel PS$$

Prove: QPSR is a parallelogram.

Jason's Proof

Jason's Floor	
Statement	Justification
$\angle PQR = 90^{\circ} \text{ and } \angle QRS = 90^{\circ}$	Lines that are
	perpendicular meet at \(\int \text{ivi} \)
	right angles.
$QP \parallel RS$	Since the interior angles
	on the same side of a
	transversal are equal, QP,
	and RS are parallel. 15 7000
$QR \parallel PS$	Since the interior angles on the same side of a transversal are equal, QP and RS are parallel.
QPSR is a parallelogram	QPSR has two pairs of
	parallel sides.

b)

20. Solve for *x*.

$$(6x - 14)^{\circ}$$

a)
$$6x-14 = 3x+10$$

 $6x-3x = 10+14$
 $3x-24$
 $x=8$

$$(9x + 32)^{\circ}$$

$$(11x + 8)^{\circ}$$

Construct a triangle with paper...

- tear off the angles and line them up!

CONJECTURE

APPLY the Math

EXAMPLE 1

Using angle sums to determine angle measures

In the diagram, $\angle MTH$ is an **exterior angle** of $\triangle MAT$. Determine the measures of the unknown angles in $\triangle MAT$.

Serge's Solution

$$\angle MTA + \angle MTH = 180^{\circ} - \cdots$$

 $\angle MTA + (155^{\circ}) = 180^{\circ}$
 $\angle MTA = 25^{\circ}$

∠MTA and ∠MTH are supplementary since they form a straight line.

$$\angle MAT + \angle AMT + \angle MTA = 180^{\circ} -$$

 $\angle MAT + (40^{\circ}) + (25^{\circ}) = 180^{\circ}$
 $\angle MAT = 115^{\circ}$

The sum of the measures of the interior angles of any triangle is 180°.

The measures of the unknown angles are:

 $\angle MTA = 25^{\circ}; \angle MAT = 115^{\circ}.$

Answer Statements Jushheahon LC + Le = 180. La + Lb + LC = 180. LC + Le = Lat Lb + LC Subtraction Le = La + Lb Subtraction

Your Turn

In the diagram for Example 3, $QP \parallel MR$. Determine the measures of $\angle MQO$, $\angle MOQ$, $\angle NOP$, $\angle OPN$, and $\angle RNP$.

Answer

In Summary

Key Idea

 You can prove properties of angles in triangles using other properties that have already been proven.

Need to Know

 In any triangle, the sum of the measures of the interior angles is proven to be 180°.

 $\angle DBA = \angle BAC + \angle ACB$

 The measure of any exterior angle of a triangle is proven to be equal to the sum of the measures of the two non-adjacent interior angles.

2s3e2 finalt.mp4

2s3e3 finalt2.mp4