Homework... Questions

p. 78: #2, 8, 10, 12, 20

10. Jason wrote the following proof.

Identify his errors, and correct his proof.

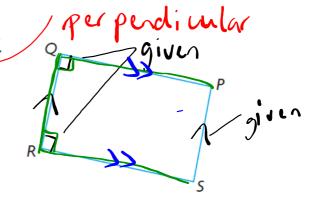
Given:

$$QP \perp QR$$

$$QR \perp RS$$

$$QR \parallel PS$$

Prove: QPSR is a parallelogram.



Jason's Proof

Justification
Lines that are
perpendicular meet at
right angles.
right angles. Since the interior angles on the same side of a $C_{\mathbf{N}}$ parameter $C_{\mathbf{N}}$ transversal are equal, QP
on the same side of a $\zeta_{\mathbf{M}} \rho \mathbf{V}$
transversal are equal, QP
and RS are parallel.
Given
QPSR has two pairs of
parallel sides.

12. Given: $\triangle FOX$ is isosceles. $\angle FOX = \angle FRS$ $\angle FXO = \angle FPQ$ Prove: $PQ \parallel SR$ and $SR \parallel XO$ 1 Statement Justification \bigcirc S $\angle FXO = \angle FPQ$ Prove: $PQ \parallel SR$ and $SR \parallel XO$ 1 $\angle FXO = \angle FSC$ Chivin

Chival

Chiva

2.3

Angle Properties in Triangles

GOAL

Prove properties of angles in triangles, and use these properties to solve problems.

Construct a triangle with paper...

- tear off the angles and line them up!

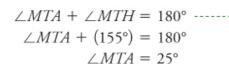
CONJECTURE

APPLY the Math

EXAMPLE 1

Using angle sums to determine angle measures

In the diagram, $\angle MTH$ is an **exterior angle** of $\triangle MAT$. Determine the measures of the unknown angles in $\triangle MAT$.



∠MTA and ∠MTH are supplementary since they form a straight line.

$$\angle MAT + \angle AMT + \angle MTA = 180^{\circ} - \Delta MAT + (40^{\circ}) + (25^{\circ}) = 180^{\circ} - \Delta MAT = 115^{\circ}$$

The sum of the measures of the interior angles of any triangle is 180°.

The measures of the unknown angles are: $\angle MTA = 25^{\circ}$; $\angle MAT = 115^{\circ}$.

EXAMPLE 2

Using reasoning to determine the relationship between the exterior and interior angles of a triangle

Determine the relationship between an exterior angle of a triangle and its **non-adjacent interior angles**.

Joanna's Solution

I drew a diagram of a triangle with one exterior angle. I labelled the angle measures a, b, c, and d.

$$\angle d + \angle c = 180^{\circ}$$
$$\angle d = 180^{\circ} - \angle c$$

 $\angle d$ and $\angle c$ are supplementary. I rearranged these angles to isolate $\angle d$.

$$\angle a + \angle b + \angle c = 180^{\circ}$$

 $\angle a + \angle b = 180^{\circ} - \angle c$

The sum of the measures of the angles in any triangle is 180°.

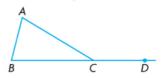
$$\angle d = \angle a + \angle b$$

Since $\angle d$ and $(\angle a + \angle b)$ are both equal to $180^{\circ} - \angle c$, by the transitive property, they must be equal to each other.

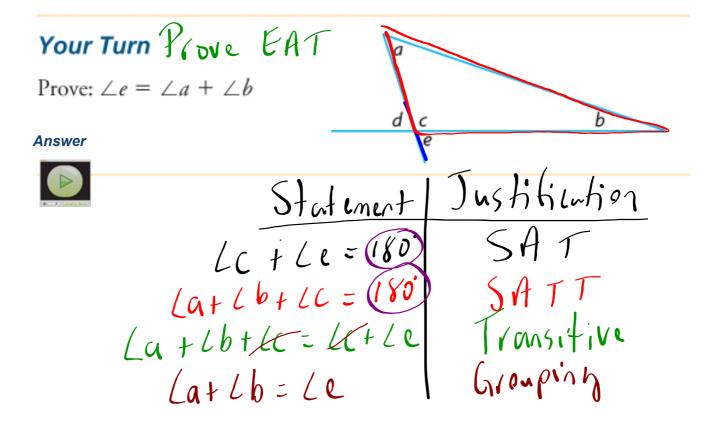
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles.

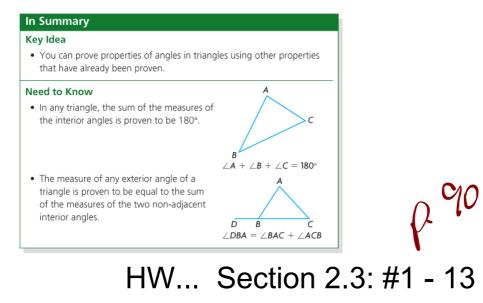
non-adjacent interior angles

The two angles of a triangle that do not have the same vertex as an exterior angle.



 $\angle A$ and $\angle B$ are non-adjacent interior angles to exterior $\angle ACD$.





PM11-2s3-2.gsp

2s3e2 finalt.mp4