ICE charts/diagram/table ICE diagrams When a reversible reaction takes place a state of equilibrium will be reached where the concentrations remain the same. In this case the equilibrium constant can be used to set up an equation describing the state of the reaction. For example for the following reaction $A + B \leftrightarrow C + D$ will have an equilibrium equation like *The task now is to determine the concentrations at equilibrium given some initial or final condition. This is the purpose of the ICE Diagram. * #### The ICE Diagram The trick is to set up the above equation remembering that any change in concentration must be consistent with the chemical reaction that is the heart of the matter. The ICE Diagram is a table in which the columns represent the different molecules. The different rows are described below. - First row for the <u>Initial concentrations (I)</u>: Place the initial concentrations for each molecule on the first row. - Second row for the Change in concentrations (C): Here create a variable designating the change in concentrations due to the reaction. Here we assume a net direction for the reaction and give the assumed reactants a negative sign and the product a positive sign. For example in the above reaction (assuming that the reaction flows from right to left) the change in concentration of A and B can be called -x and the change in concentration for C and D is +x. In the case that coefficients exits indicating that more than one of a particular molecule is involved, the change row must reflect this. Consider the following reaction: $$2A + B \leftrightarrow 3C + D$$ We can let x represent the change in concentration of B or D. $$\Delta A = -2x$$, $\Delta B = -x$, $\Delta C = +3x$, $\Delta D = +x$ • Third row for the **Equilibrium concentration (E)**: This is just the initial concentrations plus the change in concentrations. You use the equilibrium concentrations in the equation involving the equilibrium constant #### **Example:** A mixture of 1.0 mole carbon dioxide and 1.0 mole carbon monoxide are contained in a 1 liter vessel. Later 2.0 moles of water vapor is then introduced into the vessel. The following reversible reaction takes place $$CO + H_2O \leftrightarrow CO_2 + H_2$$ This reaction has an equilibrium constant of 0.64. How many moles of the different molecules will be present after equilibrium is obtained? Since there is initially no hydrogen gas in the vessel the reaction must begin going from the left to the right. So let the right side be the reactants and the left the product. So now consider the rows of the ICE table. - Since the vessel has a volume of 1 L, the number of moles must equal the molarity. So the concentration of CO and CO₂ is 1.0 m, the H₂O is 2.0 m and the H₂ has zero molarity. - Since all the coefficients are 1 the change is simple. Assuming that the left is the reactants. $$\Delta CO = -x$$, $\Delta H_2O = -x$, $\Delta CO_2 = +x$, $\Delta H_2 = +x$ • The equilibrium is just the sum of the above. So now put all this together into an ICE table. | \mathbb{Z} | СО | $\mathrm{H}_{2}\mathrm{O}$ | CO ₂ | H_2 | |--------------------|---------|----------------------------|-----------------|-------| | I (initial) | 1.0 M | 2.0 M | 1.0 M | Ø | | C (change) | -X | -x | + x | +x | | E
(Equilibrium) | 1.0 - x | 2.0 - x | 1.0 + x | X | So now feed the last row into our equilibrium equation $$k = \frac{[CO_2][H_2]}{[CO][H_2O]}$$ $$0.64 = \frac{(1.0+x)(x)}{(1.0-x)(2.0-x)}$$ Now to solve for the unknown variable. We can cross-multiply to eliminate the fractions then foil. $$0.64(1.0-x)(2.0-x)=(1.0+x)(x)$$ $$1.28-1.92x+0.64x^2=x+x^2$$ Move all the variables to one side $$0 = 0.36 x^2 + 2.92 x - 1.28$$ We can solve this using the quadratic equation, graphing etc. Our two solutions are x = -8.5, 0.42 m. The first solution cannot be physically realistic as it would mean that hydrogen would end up with a negative concentration. So the latter number must be the desired solution. Putting our value for x into the last row of our ICE table gives the final concentrations as well as the number of moles. | Molecule | Moles | |------------------|-------| | CO | 0.58 | | H ₂ O | 1.58 | | CO ₂ | 1.42 | | H ₂ | 0.42 | Note: It usually is not necessary to use the equilibrium equation if you are given the beginning conditions and some information as to the final condition. 1. 3.00 moles of N₂ gas and 1.00 mole of H₂ gas are combined in a 1 L reaction vessel. At equilibrium 0.663 moles of H₂ remain. What are the resulting concentrations? $$N_2 + 3H_2 \Leftrightarrow 2NH_3$$ #### Ex 2 $$2NH_{3(g)} \longrightarrow N_{2(g)} + 3H_{2(g)}$$ When 4.0 mol of $NH_3(g)$ is introduced into a 2.0L rigid container and heated to a particul temperature, the amount of ammonia changes to 2.0 mol. Determine the equilibrium concentration of the other two entities. ## Ex 3 For the system, if we start with 0.100 mol/L of CO_2 and H_2 , what are the concentrations of the reactants and products at equilibrium given that $K_{eq} = 0.64$ at 900 K? $$CO_2 + H_2 \leftrightarrow CO + H_2O$$ b) At 650° C, the reaction below has a K_{eq} value of 0.771. If 2.00 mol of both hydrogen and carbon dioxide are placed in a 4.00 L container and allowed to react, what will be the equilibrium concentrations of all four gases? 1. 3.00 moles of N₂ gas and 1.00 mole of H₂ gas are combined in a 1 L reaction vessel. At equilibrium 0.663 moles of H₂ remain. What are the resulting concentrations? $$N_2 + 3H_2 \Leftrightarrow 2NH_3$$ #### Ex 2 $$2NH_{3(g)} \longrightarrow N_{2(g)} + 3H_{2(g)}$$ When 4.0 mol of NH₃(g) is introduced into a 2.0L rigid container and heated to a particul temperature, the amount of ammonia changes to 2.0 mol. Determine the equilibrium concentration of the other two entities. #### Ex3 For the system, if we start with 0.010 mol/L of H_2 and I_2 and 0.096 mol/L of H_2 , what are their concentrations at equilibrium given that Keq= 0.016? 1. 3.00 moles of N₂ gas and 1.00 mole of H₂ gas are combined in a 1 L reaction vessel. At equilibrium 0.663 moles of H₂ remain. What are the resulting concentrations? $$N_2 + 3H_2 \Leftrightarrow 2NH_3$$ | R | N_2 | + 3H ₂ 之 | 2NH ₃ | |---|-------|---------------------|------------------| | I | 3.0 | 1.0 | 0 | | С | -X | -3x | +2x | | E | 3.0-x | 0.663 | 2x | $$1.0-3x = 0.663$$ $$X = 0.112$$ $$3.0-x = 3.0-0.112$$ [N₂] = 2.89 mol/L $2x = 2(0.112)$ [NH₃] = 0.224 mol/L Ex 2 $$2NH_{3(g)} \longrightarrow N_{2(g)} + 3H_{2(g)}$$ When 4.0 mol of NH₃(g) is introduced into a 2.0L rigid container and heated to a particular temperature, the amount of ammonia changes to 2.0 mol. Determine the equilibrium concentration of the other two entities. $NH_{3(g)}$ initial =4.0 mol/2.0L = 2 M $NH_{3(q)}$ equilibrium 2.0 mol/2.0L = 1 M | | 2NH _{3(g)} ≤ | > N _{2(g)} + | $3H_{2(g)}$ | | |---|-----------------------|-----------------------|-------------|--| | I | 2.0 | 0 | 0 | | | С | -2x | +x | +3x | | | Е | 1.0 | Х | 3x | | | | | | | | $$2.0 - 2x = 1.0$$ $$x [N_2] = 0.50 \text{ mol/L}$$ $$3x [H_2] = 1.5 \text{ mol/L}$$ For the system, if we start with 0.100 mol/L of CO_2 and H_2 , what are the concentrations of the reactants and products at equilibrium given that $K_{eq} = 0.64$ at 900 K? $$K_{eq} = \frac{[CO][H_2O]}{[H_2][CO_2]} = 0.64$$ $$\begin{split} K_{eq} = & \frac{(x)(x)}{(0.100 - x)(0.100 - x)} = 0.64 \quad then \quad \sqrt{\frac{x^2}{(0.100 - x)^2}} = \sqrt{0.64} \\ & \frac{x}{0.100 - x} = 0.80 \\ & x = 0.080 - 0.80x \\ & 1.80x = 0.080 \quad and \quad x = 0.044 \end{split}$$ \therefore [CO]_{eq} = [H₂O]_{eq} = 0.044 M and [CO₂]_{eq} = [H₂]_{eq} = 0.100 - 0.044 = 0.056 M At 650° C, the reaction below has a K_{eq} value of 0.771. If 2.00 mol of both hydrogen and carbon dioxide are placed in a 4.00 L container and allowed to react, what will be the equilibrium concentrations of all four gases? $$CO_2 + H_2 \leftrightarrow CO + H_2O$$ $$H_2 + CO_2 \leftrightarrow CO + H_2O$$ $$I \quad 0.500 \quad 0.500 \quad 0 \quad 0$$ $$C \quad -x \quad -x \quad +x \quad +x$$ $$E \quad 0.500 - x \quad 0.500 - x \quad +x \quad +x$$ $$K_{eq} = \frac{[CO][H_2O]}{[CO_2][H_2]} = 0.771$$ $$K_{eq} = \frac{(x)(x)}{(0.500 - x)(0.500 - x)} = 0.771 \quad \text{then} \quad \sqrt{\frac{x^2}{(0.500 - x)^2}} = \sqrt{0.771}$$ $$\frac{x}{0.500 - x} = 0.878$$ $$x = 0.439 - 0.878x \quad \text{then} \quad x = 0.234$$ $$\therefore \text{ [CO]}_{eq} = 0.260 \, \text{M} \,, \text{ [H}_2 \text{O]}_{eq} = 0.234 \, \text{M} \text{ and } \text{[H}_2 \text{]}_{eq} = \text{[CO}_2 \text{]}_{eq} = 0.500 \, \text{-} \, 0.234 = 0.266 \, \text{M} \,, \text{ [H}_2 \text{O]}_{eq} = 0.234 0.$$ Ex 3 For the system, if we start with 0.010 mol/L of $\rm H_2$ and $\rm I_2$ and 0.096 mol/L of HI, what are their concentrations at equilibrium given that Keq= 0.016? | | 2 HI ← | H ₂ | + | l ₂ | |-------------|------------|--|---|----------------------------| | | 0.096 | 0.010 | 0 | 0.010 | |) | -2x | +χ | | +χ | | Ξ | 0.096 - 2x | 0.010 |) + x | 0.010 + x | | | heg= | 山 | | 5 | | | 0.016 f | Lo. | 96-6
310-1 | 22) 2 22) 2 22) 2 22) 2 | | 6- 2 | 1.252x= | 6.0 | 07 | | | | | 0.096 $ \begin{array}{c} -2x \\ 0.096 - 2x \\ -2x \\ 0.096 - 2x \end{array} $ $ \begin{array}{c} 0.016 \\ -2x(0.126) \\ 1.252x = 0.096 \end{array} $ | $0.096 0.016$ $-2x +x$ $0.096 - 2x 0.016$ $\log = $ | 0.096 0.010
C -2x +x | $$x = 0.0016$$ [HI] = 0.096-2x = 0.093 mol\L [H₂] & [I₂] = 0.010 + x = 0.012 mol/L Ex 3 For the system, if we start with 0.010 mol/L of $\rm H_2$ and $\rm I_2$ and 0.096 mol/L of HI, what are their concentrations at equilibrium given that Keq= 0.016? | 2 HI ← | H ₂ | + | | |--------------------|----------------|--------|---------------| | ı 0.096 | 0.01 | 0 | 0.010 | | C -2x | +x | | +x | | E 0.096 - 2x | 0.01 | 0 + x | 0.010 + x | | Keg= | | | [12] | | | | | HI) | | 0.016- | = [. | a 01 t | X+X) [x4012x] | | | | | .096-2+ | | 0.016 = | | 0.01 | $0+\times)^2$ | | | (| 6.091 | 6-2x) | | 0.126 - | | | | | 0.126(0.096-24 | ` ' | | 16-21 | | U11 QQ (U.U 16-04 | ソー | 0.0 | 10+4 | | 0.012176.2 | 52 X | 7= (| (010)() | | 0.0121-6 | .01D | = 6, | 252x 1 7 | | 0.0021 | • | 7 | 1.252X | | 1.252 | V | . 0.0 | 1.262 | # Homework Questions 1-4 Keq Extra Problems assignment 16 questions.docx ## Quiz Section 18.1 & 18.2 Quiz Friday ### Correction Considering the following equilibrium: $$_{2AB_{3(g)} \leftrightarrow A_{2(g)} +} 3B_{2(g)}$$ If 0.87 moles of AB_3 are injected into a 5.0L container at $25^{\circ}C$, at equilibrium the final $[A_2]$ is found to be 0.070M. (Hint: make a table and use it to answer the questions below). #### 18.1 #### **Objectives** - · Describe how to express the rate of a chemical reaction - · Identify four factors that influence the rate of a chemical reaction #### Vocabulary - rate - · collision theory - · activation energy - activated complex - · transition state - inhibitor #### 18.2 #### **Objectives** - Describe how the amounts of reactants and products change in a chemical system at equilibrium - Identify three stresses that can change the equilibrium position of a chemical system - $\bullet\,$ Explain what the value of $K_{\rm eq}$ indicates about the position of equilibrium #### Vocabulary - · reversible reaction - · chemical equilibrium - · equilibrium position - Le Châtelier's principle - equilibrium constant (K_{eq}) #### **Key Equation** • $$K_{\text{eq}} = \frac{[C]^c \times [D]^d}{[A]^a \times [B]^b}$$ When $aA + bB \rightleftharpoons cC + dD$ #### 18.1 - Four factors that affect the rate of reaction - rate- measure of speed/interval of time - key terms #### 18.2 - reversible reactions - Le Chatelier's Principle- factors affecting equilibrium #### > Concentration - - increased conc shifts to opposite side - decreased conc shifts to same side #### > Heat - increase in temperature shifts to side without heat - decrease in temp shifts to the side with heat #### > Pressure - - increase in pressure shifts to side with least moles of gas - decrease in pressure shifts to side with most moles of gas $$\bullet \quad \mathsf{K}_{\mathsf{eq}} = [\mathsf{C}]^{\mathsf{c}}[\mathsf{D}]^{\mathsf{d}}$$ $$[\mathsf{A}]^{\mathsf{a}}[\mathsf{B}]^{\mathsf{b}}$$ - [A]^a is a concentration value in mol/1.0 L or molarity(M) - K_{eq} > 1~ products favored - K_{eq} < 1~ reactants favored - ICE tables 11. $$C_0 + H_2 0 = C_{02} + H_2$$ $10.01 \quad 0.01 \quad 0.01 \quad 0.01$ $C_{-x} - x \quad -x \quad -x \quad -x \quad -x$ $E_{0.01-x} \quad 0.01-x \quad 0.01-x \quad 0.01-x$ $E_{0.01-x} y =0.01 21 Quiz 18.1 & 18.2 Practice quiz answers Section review answers SKMBT_50117110115160.pdf SKMBT_50117110115161.pdf SKMBT_50117110115162.pdf review practice for 181 & 182 quiz.tst Chem Help today 12:30 and 3:15 - 4:00 | 1 measure the speed of any change that occurs within | 1. Rates | |--|-------------------| | | | | a time interval. Collision theory states that particles when | 2. react | | they collide, provided that they have enough3 | 3. Kinetic energy | | The rate at which a chemical reaction occurs is determined | 1. activation | | by an $\underline{}$ energy barrier. The activation energy is the $\underline{}$ 5 | 5. MINIMUM | | energy that reactants must have to be converted to6 The | 6. products | | higher the activation energy barrier, the7 the reaction. | 7. <u>slower</u> | | Chemists help reactants overcome the activation barrier in a | 8. temperature | | number of ways. Two effective methods are to increase the8 | 9. catalyst | | at which the reaction is done or use a9 Rates of reaction | 10. increasing | | can also be increased by the concentration of reactants. | | | Part B True-F | 415 | |-------------------------|--------| | Classific each of these | etatam | Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 5T 11. An increase in temperature will increase the rate of a reaction. Chapter 18 Reaction Rates and Equilibrium 457 #### Column B Column A a. synonym for an activated complex 15. rate 16. collision theory b. speed of a change that occurs over time c. substance that interferes with the action of a catalyst 17. activation energy d. Particles can react to form products when they 18. transition state collide, provided they have enough kinetic energy. e. an unstable arrangement of atoms that forms 19. activated complex momentarily at the peak of the activation energy barrier f. minimum energy that particles must have in order 20. inhibitor to react #### **Part D Questions and Problems** Answer the following question and solve the following problem in the space provided. 21. An ice machine can produce 120 kg of ice in 24 hours. Express the rate of ice production in kg/h. #### **Part A Completion** Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number. | · | | |--|-------------------------| | In principle, all reactions are That is, reactants go to | 1. reversible | | $\underline{}$ in the $\underline{}$ direction, and products go to $\underline{}$ in | 2. products | | the <u>5</u> direction. | 3. forward | | The point at which the rate of conversion of6 to | 4. reactants | | 7 and vice versa is equal is the 8 position. The | 5. <u>reverse</u> | | $\underline{}$ of a reversible reaction, $K_{\rm eq}$ is useful for determining the | 6. <u>reactants</u> | | position of equilibrium. It is essentially a measure of the10 | 7. products | | of products to reactants at equilibrium. The direction of change in | 8. equilibrium | | the position of equilibrium may be predicted by applying | 9. equilibrium constant | | 11 principle. | 10. ratio | | | 11. LeChatelier's | #### Part B True-False Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. - NT 12. The concentrations of reactants and products in a system at dynamic equilibrium are always changing. - 5T 13. A change in the pressure on a system can cause a shift in the equilibrium position. - 14. For a chemical equilibrium to be established, the chemical reaction must be irreversible. - AT 15. The K_{eq} for a certain reaction was 2×10^{-7} . For this reaction at equilibrium, the concentration of the reactants is greater than the concentration of the products. #### Part C Matching 1 Match each description in Column B to the correct term in Column A. #### Column A - ______16. reversible reaction - _______17. chemical equilibrium - b 18. equilibrium position #### Column B - a. state of balance in which forward and reverse reactions take place at the same rate - **b.** relative concentrations of reactants and products of a reaction that has reached equilibrium - c. When stress is applied to a system at equilibrium, the system changes to relieve the stress. - reaction in which conversion of reactants to products and products to reactants occur simultaneously - e. ratio of product concentrations to reactant concentrations with each raised to a power given by the number of moles of the substance in the balanced equation #### Part D Problem Solve the following problem in the space provided. Show your work. 21. $$2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$$ Calculate $K_{\rm eq}$ for this reaction if the equilibrium concentrations are: $[{\rm SO_2}]=0.42M,\, [{\rm O_2}]=0.21M,\, [{\rm SO_3}]=0.072M$ $$K_{eq} = \frac{[0.42 \,\text{m}]^2 \times [0.21 \,\text{m}]}{[0.072 \,\text{m}]^2}$$ = 7.145 = 7.1 >1, so Javours products ### MC 1. B 2. 6 3. 8 4 9 5 10 11. $$K_{eq} = \frac{[C]^c \times [D]^d}{[A]^a \times [B]^b}$$ $$(A)^3 (B)^2$$ $$Keq = [PCI_5]$$ = $\frac{1}{2}$ (0.35) 14. $$H_2 + I_2 = 2HI$$ $2H - 1$ 2 $$\begin{cases} QQ = D^{3} = 1.4 \times 10^{-4} = D^{2} \\ 0.24 \end{bmatrix}^{3}$$ $$(1.4 \times 10^{-4}) [0.24]^3 = [D]^2$$ $$D = 1.4 \times 10^{-3} \text{ mol/L}$$ - 16. a shifts left - b. shifts right - c. shifts right - d. shifts right You use the equilibrium concentrations in the equation involving the equilibrium constant #### **Example:** A mixture of 1.0 mole carbon dioxide and 1.0 mole carbon monoxide are contained in a 1 liter vessel. Later 2.0 moles of water vapor is then introduced into the vessel. The following reversible reaction takes place $$CO + H_2O \leftrightarrow CO_2 + H_2$$ This reaction has an equilibrium constant of 0.64. How many moles of the different molecules will be present after equilibrium is obtained? Since there is initially no hydrogen gas in the vessel the reaction must begin going from the left to the right. So let the right side be the reactants and the left the product. So now consider the rows of the ICE table. - Since the vessel has a volume of 1 L, the number of moles must equal the molarity. So the concentration of CO and CO₂ is 1.0 m, the H₂O is 2.0 m and the H₂ has zero molarity. - Since all the coefficients are 1 the change is simple. Assuming that the left is the reactants. $$\Delta CO = -x$$, $\Delta H_2O = -x$, $\Delta CO_2 = +x$, $\Delta H_2 = +x$ • The equilibrium is just the sum of the above. So now put all this together into an ICE table. | | CO | H ₂ O | CO ₂ | H_2 | |--------------------|---------|------------------|------------------|------------------| | I (initial) | 1.0 M | 2.0 M | 1.0 M | Ø | | C (change) | -X | -X | $+_{\mathbf{X}}$ | $+_{\mathbf{X}}$ | | E
(Equilibrium) | 1.0 - x | 2.0 - x | 1.0 + x | X | So now feed the last row into our equilibrium equation $$k = \frac{[CO_2][H_2]}{[CO][H_2O]}$$ $$0.64 = \frac{(1.0+x)(x)}{(1.0-x)(2.0-x)}$$ Now to solve for the unknown variable. We can cross-multiply to eliminate the fractions then foil. $$0.64(1.0-x)(2.0-x) = (1.0+x)(x)$$ $$1.28-1.92x+0.64x^2 = x+x^2$$ Move all the variables to one side $$0 = 0.36 x^2 + 2.92 x - 1.28$$ We can solve this using the quadratic equation, graphing etc. Our two solutions are x = -8.5, 0.42 m. The first solution cannot be physically realistic as it would mean that hydrogen would end up with a negative concentration. So the latter number must be the desired solution. Putting our value for x into the last row of our ICE table gives the final concentrations as well as the number of moles. | Molecule | Moles | |------------------|-------| | CO | 0.58 | | H ₂ O | 1.58 | | CO ₂ | 1.42 | | H ₂ | 0.42 | Note: It usually is not necessary to use the equilibrium equation if you are given the beginning conditions and some information as to the final condition. Keq Extra Problems assignment 16 questions.docx SKMBT_50117110115160.pdf SKMBT_50117110115161.pdf SKMBT_50117110115162.pdf review practice for 181 & 182 quiz.tst