Physics 112

Thursday, December 13/18

http://mvhs.nbed.nb.ca/
http://mvhs-sherrard.weebly.com/

1. Questions?

Worksheet -C6 PP #19-21 -> Kinetic Energy - C6 PP #22-25 ->
$$E_k$$
 and Work- E_K Theorem

2. FA - Kinetic Energy

FA - Work-E Theorem

FA - Work-F_k Theorem (Problem)

Do and check in class.

- 3. Worksheet C6 PP #27 and 29 -> Gravitational Pot. Energy C6 PP #30-33 -> W- E_g Theorem
- 4. FA Gravitational Potential Energy FA Change in Gravitational Pot. Energy
- 5. Restoring Force, Hooke's Law and Elastic Limit
- 6. Elastic Potential Energy
- 7. FA Elastic Potential Energy
- 8. Worksheet C6 PP #35-37 -> Hooke's Law C6 PP #38-40 - Hooke's Law and E_e C6 PFU #16-17, 20, 23-25, 27-28, 30-31
- 9. SA U3S2 Types of Energy and Work-Energy Theorems- Wednesday, Dec. 19/18

Minetic Energy
(motion)

Maiful mation

Existing

Existing

Existing

W= SEX

Formative Assessment – Kinetic Energy

You serve a volleyball that has a mass of 2.1 kg. With what speed does the ball leave your hand if it has 945 J of kinetic energy?

$$m=2.1ky$$

$$E_{K}=9+5$$

$$V=7$$

$$f$$

$$V=30m/5$$

$$W$$

Formative Assessment - Work-Kinetic Energy Theorem

Given the following variables, what version of the work-kinetic energy theorem should be used?

- a) m, v_i , F, d, v_f
- W=0EK Fd=Exf-Exi Fd=2m1,2m1,2

b) $d, \triangle E_k, F$

FJ= SEK

- c) v_i , W, m, E_{kf}
- W=SEK W=EKF-EK; <-1: EKF - Lm1; 2
- d) Eki, d, F, Ekf
- FdiEKt-EKi

Formative Assessment – Work-Kinetic Energy Theorem (Problem)

A 80.3 kg student wearing frictionless roller skates moving at 1.2 m/s on a horizontal surface is pushed by a friend with a constant force of 45 N. How far must the student be pushed so that her final kinetic energy is 352 J?

Physics 122

Thursday, December 13/18

http://mvhs.nbed.nb.ca/
http://mvhs-sherrard.weebly.com/

- 1. FA Horizontal Projectiles Deadline: Wed., Dec. 12/18
- 2. Worksheet Projectiles Fired at an Angle

- C11, Text 543, PP #9-12

Worksheet - Projectiles Fired at an Angle

- C11, Text 549, PP #13, PP #14 (Level 1)
- C11, Text 570, PFU #17, 19, 20 (omit graph)

Worksheets - Mixed Horizontal and Fired at an Angle Projectiles (2)

- 3. FA Projectile Fired at an Angle Deadline: Thurs., Dec. 13/18
- 4. FA Mixed SHM and Projectile Motion (Optional)
- 5. SA U2 S3&4 SHM and Projectile Motion
 - 5 Problems (10 min/Prob)
 - Monday, Dec. 17/18
- 6. Unit 3 Section 1 Electrostatics
- 7. Electrostatics
- 8. Types of Charge
- 9. Transfer of Charge
- 10. Law of Conservation of Electric Charge
- 11. Electrostatic Force
- 12. Coulomb's Law
- 13. Worksheet Charge and Coulomb's Law (Two Objects)

Science 10

Thursday, December 13/18

http://mvhs.nbed.nb.ca/ http://mvhs-sherrard.weebly.com/

- Science Articles Complete 8 by the end of the semester.
 Optional Assignment Graphing Characters (Max. 2)
 Due: Dec. 21/18
- 2. More Examples: Average Speed Problems
- 3. Worksheets Average Speed Problems (3)
- 4. SA Physics #2
 - Topics (See Next Page)
 - Date: Tuesday, Dec. 18/18
- 5. Review: SA Physics #2
- 6. Roller Coasters and/or Intervention

Science 10 **Topics - SA: Physics #2**

- 1. Plot and label points in the four quadrants.
- 2. Write the coordinates of a plotted point.
- 3. Determine the slope of a line using:

$$m = rise \over run$$
 OR $m = y_2 - y_1 \over x_2 - x_1$

- 4. Draw and label a distance vs. time graph.
- 5. Be able to determine the speed of an object from a distance vs. time graph.
- 6. Answer questions about distance vs. time graphs.
- 7. Match a graph to a story/interpret a graph.
- 8. Solve average speed problems.