FEBRUARY 26, 2018

UNIT 5: LINEAR EQUATIONS AND

INEQUALITIES

SECTION 6.4: SOLVING LINEAR INEQUALITIES BY USING ADDITION & SUBTRACTION

K. Sears
MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Patterns and Relations 4" OR "PR4" which states:

"Explain and illustrate strategies to solve single variable linear inequalities with rational coefficients within a problem-solving context."

What does THAT mean???

SCO PR4 means MORE ALGEBRA, but without the equals sign!!!

Warm Up

$$\frac{5x^{(12)}}{6} = \frac{5x^{(12)}}{4} + 3^{(12)}$$

HOMEWORK QUESTIONS???

(pages 292 / 293 3-13, 16)

Here's an inequality:

2 < 8

(Add 2 to both sides.)

2 + 2 < 8 + 2

4 < 10

Is the new inequality still true?

YES!!!

Here's another inequality:

(Subtract 1 from both sides.)

$$7 - 1 > 4 - 1$$

Is the new inequality still true?

YES!!!

When the <u>same number</u> is added to or subtracted from <u>each side</u> of an inequality, the resulting inequality is still <u>true</u>.

For this reason, TO SOLVE AN INEQUALITY, we use the same strategy as for solving an equation: isolate the variable by adding to or subtracting from each side of the inequality.

Solve the EQUATION:

$$x + 6 = 10$$

 $x + 6 - 6 = 10 - 6$
 $x = 4$

The equation only has ONE solution (x = 4).

Solve the INEQUALITY:

$$x + 6 < 10$$

 $x + 6 - 6 < 10 - 6$
 $x < 4$

The inequality has an INFINITE number of solutions (x < 4).

- i) Solve the inequality: $6^{\frac{14}{5}} \leq x 4^{\frac{14}{4}}$
- ii) Verify the solution. $0 \le x$
- iii) Graph the solution. X≥ 10

Jake plans to board his dog while he is away on vacation.

- * Boarding house A charges \$90 plus \$5 per day.
- * Boarding house B charges \$100 plus \$4 per day. For how many days must Jake board his dog for boarding house A to be less expensive than boarding house B?
- a) Write an inequality that can be used to solve this problem.
- b) Solve the problem.
- c) Graph the solution.
- d) Check your solution on page 297 of the textbook.

CONCEPT REINFORCEMENT:

MMS9:

Page 298: #4, #5 and #7 to #11

Page 299: #12 and #14

Page 309: #15

Be sure to check your answers in the back of the book as part of your homework. The answers for this section begin on page 516.

***Worksheet...Inequalities graphs