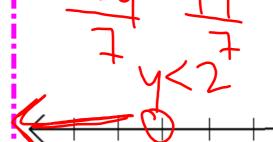
Curriculum Outcome

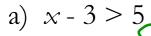
PR1: Generalize a pattern arising from a problem-solving context using linear equations and verify by substitution.

PR3. Model and solve problems using linear equations of the form:

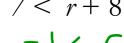

ax = b; = b, a \neq 0; ax + b = c; +b = c, a \neq 0; = b, $x \neq$ 0 ax ax xa ax + b = cx + d; a(bx + c) = d(ex + f); a(x + b) = c; ax = b + cx concretely, pictorially and symbolically, where a, b, c, d, e, and f are rational numbers

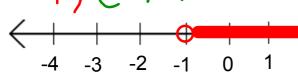
Student Friendly: Replacing the equal sign with an inequality sign (ie. <, >)

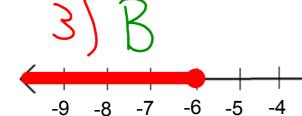
$$+13$$
 $1. \quad 11 \ge x - 13$


2.
$$5y - 8 < -2y + 6$$

Match each inequality with the graph

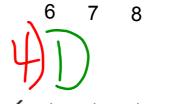

+4 +4

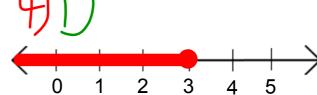



a)
$$x-3 > 5$$

b) $-10 \ge -4 + p$
 $x > 0$
 $x >$

c)
$$7 < r + 8$$





10

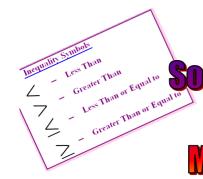
11

9

Solving Problems Using Inequalities:

Alison plans to rent a hall for her grad party.

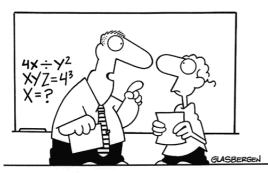
- The Douglastown Rec Centre charges \$90 plus \$20 an hour.
- The Chatham Head Rec Centre charges \$100 plus \$19 an hour.


For how many hours must she rent the hall in Douglastown in order for it to be <u>less</u> expensive than the hall in Chatham Head?

Write an expression that reprsents each scenario

Let h = number of hours

Douglastown: 90 + 20 h Chatham Head: 100 + 19h


Set up the inequality
$$-\frac{19h}{90 + 20h} < 100 + 19h$$

 $90 + 20h < 100 - 90$
 $-\frac{19h}{90 + 100} < \frac{100}{90} < \frac{100}{100} < \frac$

Section 6.5 Linear Inequalities by Using

Copyright 1997 Randy Glasbergen. www.glasbergen.com

"Algebra class will be important to you later in life because there's going to be a test a few days from now,"

Let's Have A Look

Place a > or < sign that makes the statement true.

5 -7 5(-1) -7(-1) Now lets multiply each side by (-1) -5 4 What do you notice???

Let's Have A Look

Place a > or < sign that makes the statement true.

Now lets divide each side by (-6)

What do you notice???

$$\frac{-6}{-6}$$
 $\frac{-18}{-6}$ $\frac{-18}{-6}$ $\frac{-18}{-6}$

Properties of Inequalties

1) When you multiply or divide a inequality by a positive number the inequality remains the same.

Example)
$$5 > -1$$

 $5(3) > (-1)(3)$
 $15 > -3$

2) When you multiply or divide a inequality by a "negative number" the inequality must be reversed(switched) in order to remain true.

$$12 \Rightarrow -10$$

$$12 \div (-2) \qquad -10 \div (-2)$$
Switch inequality since divided by a negative
$$12 \div (-2) < -10 \div (-2)$$

$$-6 < 5$$
NOTE:

When solving an inequality, we use the same strategy as for solving an equati

BUT

Remember when we divide or multiply by a negative number, we reverse the inequality sign.

Switch the inequality sign ONLY when you divide or multiple by a negative

Solving a Multi-Step Inequality

What if you solve for a negative "variable"

1)
$$\frac{-2n}{-\sqrt{2}} > \frac{12}{-2}$$
 2) $\frac{n}{4} > 2$
 $n < -6$ $n < -8$
 $-2(-7) > 12 \frac{-12}{-4} > 2$
 $14 > 12 \frac{-12}{-4} > 2$

p. 298 Questions:4ace, 6ac, 7, 9acef, 12,13

p. 305 Questions:7abd,9ace,10,11ac,12ac,13,16ac,17a,18