* Some steps were anitted due to limited Sp

Physics 112

SA – U3 – S2 & S3: Types of Energy and Work-Energy Theorems (Key) (June 2018)

Name -	ey	Date -	hed	Tune	6/18
			view,	Jone	W/18

Solve the following problems on loose leaf. Show your work.

1. A stuntman is attached to a bungee cord with an un-stretched length of 15 m. He jumps off a bridge and comes to a stop just above the river, giving the bungee cord a stretched length of 44 m. If the bungee cord has 9.97 x 10³ J of elastic potential energy when stretched as described, what is the mass of the stuntman? (8)

2. Missy Dewater was a platform diver for the Ringling Brother's Circus. If she had 1.20 x10⁴ J of kinetic energy just prior to hitting the water on a particular dive, what was her speed at that instant? Missy's mass was 40.8 kg at the time of the dive. (3)

3. You place a 3.70 g ornament on a branch of your Christmas tree that is 1.94 m from the floor. You change your mind and move the ornament to a higher branch by doing 0.0826 J of work on it. What is the final potential energy of the ornament relative to the floor? (7)

* There are several ways to Jone is shown below.

Solve This problem.

$$W = E_{f} - E_{f}$$

$$W = E_{f} - mgh_{i}$$

$$E_{f} = (w + mgh_{i})$$

$$E_{f} = 0.0826 + (0.00370)(9.80)(1.94)$$

$$M = 3.70g = 0.00370/cy$$

$$E_{f} = 0.153J$$
The final potential of the ornament relative to the flow is 0.153J.

4. A 9.345 x 10³ kg UFO experiences a force of 8.34 x 10² N over a distance of 7.45 x 10³ m. What was the initial speed of the UFO is its final speed was 195 km/h? (6)

$$m = 9.345 \times 10^{3} \text{lg}$$
 $F = 8.34 \times 10^{2} \text{N}$
 $d = 7.45 \times 10^{3} \text{m}$
 $v_{i} = ?$
 $v_{f} = 195 \text{km} = 54.2 \text{m}$

$$W = FJ = \Delta E_{IC}$$

$$FJ = \frac{1}{2} m_{0}f^{2} - \frac{1}{2} m_{0}i^{2}$$

$$V_{i} = \sqrt{\frac{m_{0}f^{2} - 2FJ}{m}}$$

$$V_{i}' = 40.1 mls$$

5. Calculate the potential energy, kinetic energy, mechanical energy, speed, and height of the ball at the positions indicated. Write and report answers to 2 SDs on the lines provided. (14)

$$E_{g} = 26 J$$

$$E_{k} = 49 J$$

$$ME = 45 J$$

$$h = 54 Km$$

$$E_{g} = 0$$

$$E_{k} = 4$$

$$ME = 4$$

$$V = 1$$

$$h = 0$$

$$E_{g} = \begin{cases} 32 \text{ J} \\ E_{k} = \end{cases}$$

$$ME = \begin{cases} 73 \text{ J} \\ V = \end{cases}$$

$$E_{k} = \frac{1}{2}(0.46)(9.6)^{-1}$$
 $E_{jk} = \frac{195}{2}$
 $E_{g} = \frac{45}{19} = \frac{265}{2}$
 $E_{g} = \frac{195}{19} = \frac{165}{2}$
 $E_{g} = \frac{195}{19} = \frac{165}{2}$

6. A 0.012 g pebble is placed in a sling shot and is stretched back 0.485 m. What is the spring constant of the sling shot if the speed of the pebble is 70.7 m/s when it leaves the slingshot? (6)

$$M = 0.012g = 0.012 \times 10^{-3} \text{ f}$$
 $X = 0.485 \text{ m}$
 $k = 7$
 $Y = 70.7 \text{ m}$

$$E_{K} + E_{f} + E_{e}; = E_{K} + E_{f} + E_{e} + E_{$$

The gruz constat us 0,12 Mm