March 19, 2018

UNIT 6: LINEAR RELATIONS

4.3: ANOTHER FORM OF THE EQUATION FOR A LINEAR RELATION

K. Sears
MATH 9

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Patterns and Relations 2" OR "PR2" which states:

"Graph linear relations, analyze the graph and interpolate or extrapolate to solve problems."

HOMEWORK QUESTIONS?

(pages 170 -173 4-16; page 181 3-5; page 201 4-6)

Equation?

$$\Leftrightarrow$$
 $y=3$
horizontal

X	У
1	3
4	3
ース	റ
5	3
6	3

The graph of the equation y = b, where b is a constant, is a horizontal line. Every point on the graph has a y-coordinate of b.

Equation?

X	У
3	0
3	T
3	2
3	(
3	5

The graph of the equation x = a, where a is a constant, is a vertical line. Every point on the graph has an x-coordinate of a.

Example 1 **Graphing and Describing Horizontal and Vertical Lines**

For each equation below:

- i) Graph the equation.
- ii) Describe the graph.

a)
$$x = -4$$

b)
$$y + 2 = 0$$

Example 2

Graphing an Equation in the Form ax + by = c

For the equation 3x - 2y = 6:

- a) Make a table of values for x = -4, 0, and 4.
- b) Graph the equation.

$$3x - 2y = 6$$

$$-2y = -3x + 6$$

$$-2 = -2 - 2$$

$$y = 3x - 3$$

Example 2 Graphing an Equation in the Form ax + by = c

For the equation 3x - 2y = 6: $y = \frac{3}{2}x - 3$

- a) Make a table of values for x = -4, 0, and 4.
- **b)** Graph the equation.

PLEASE TURN TO PAGE 178 INMMS9.

"Discuss the Ideas":

- 1. The equation of an <u>oblique</u> line has 2 variables; the equation of either a <u>vertical</u> or <u>herizontal</u> line only has <u>l</u> variable.
- 2. They think of the x-axis being $\frac{h_0 r_i z_0 h_1}{y=0}$. Think the opposite for x = a!!!
- 3. a) x = a (| line)
 - b) $y = a \left(\frac{horizonta}{lone} \right)$ line)

PLEASE TURN TO PAGE 178 IN MMS9.

"Discuss the Ideas":

- 1. The equation of an oblique line has 2 variables ("x" and "y"); the equation of either a horizontal line ("y") or vertical line ("x") only has 1 variable.
- 2. They think of the x-axis being horizontal.

 Think the opposite for x = a; think of where the line crosses an axis in the graph. A vertical line (x = a) crosses the x-axis!!! Its equation is x = x-intercept.
- 3. a) x = a (vertical line; x = x-intercept)
 - b) y = b (horizontal line; y = y-intercept)

CONCEPT REINFORCEMENT:

MMS9:

PAGE 178: #4, 5 and 7

PAGE 179: #8, 9, 10, 11, 12, 13(a), and 14

PAGE 180: #15, 17, and 18

PAGE 181: #6 and #7

PAGE 201: #7

PAGE 202: #8, 9 and #10