

More practice

Scientific notation

1) $10 \times 10 \times 10 \times 10 \frac{10^{4}}{3)} 3 \times 10 \times 10 \times 103 \times 10^{3}$
2) $10 \times 10 \times 10 \times 10 \times 10$ \qquad
3) $3 \times 10 \times 10 \times 103 \times 10^{3}$
4) $1000000000000+10^{12}$
5) $7 \times 10 \times 10 \times 10 \times 10$
6) $\underbrace{34} 800000 ~ 3,48 \times 10^{7}$
Please write the expanded number
7) $1 \times 10^{4} \quad 10000$
8) 1×10^{-7}
9) $8.21 \times 10^{2}=0.003$
10) 9×10^{4}
11) 6.45×10^{-5}

Scientific notation

1) $10 \times 10 \times 10 \times 10 _10^{4}$
2) $10 \times 10 \times 10 \times 10 \times 10 _10^{5}$
3) $3 \times 10 \times 10 \times 10 \quad \overline{3 \times 10^{3}}$
4) $1000000000000 \quad 10^{12}$ 4) $7 \times 10 \times 10 \times 10 \times 10 _7 \times 10^{4}$
5) $34800000 _3,48 \times 10^{7}$ \qquad 6). $00000000000000000022_{-}^{2 \times 10^{-18}}$

Please write the expanded number

8) 1×10^{4}	10000	9) 1×10^{-7}
10) 3×10^{-3}	0,003	11) $9 \times 10 \square$
12) 8.21×10^{2}	821	13) 6.45×10^{-5}

12) 8.21×10^{2} \qquad 0,003
-821 \qquad 11) 9×10 -90 0,0000645

$10000=1 \times 10^{4}$	$24337=2.4327 \times 10^{4}$
$1000=1 \times 10^{3}$	$7354=7.354 \times 10^{3}$
$100=1 \times 10^{2}$	$482=4.82 \times 10^{2}$
$10=1 \times 10^{1}$	$89=8.9 \times 10^{1}$ (not usually done)
$1=10^{\circ}$	
$1 / 10=0.1=1 \times 10^{-1}$	$0.32=3.2 \times 10^{-1}$ (not usually done)
$17100=0.01=1 \times 10^{2}$	$0.053=5.3 \times 10^{2}$
$1 / 1000=0.001=1 \times 10^{3}$	$0.0078=7.8 \times 10^{3}$
$1110000=0.0001=1 \times 10^{-4}$	$0.00044=4.4 \times 10^{4}$

In scientific notation, the digit term indicates the number of significant figures in the number. The exponential term only places the decimal point. As an example,
$46600000=4.66 \times 10^{7}$
This number only has 3 significant figures. The zeros are not signficant; they are only holding a place. As another example, $0.00053=5.3 \times 10^{-4}$

This number has 2 significant figures. The zeros are only place holkers. 13) 6.45×10^{-5}

$$
\begin{aligned}
0.0056= & \underline{5.6} \times 10^{-3} \\
\underline{24010}= & 2.401 \times 10^{4} \\
4085= & 4.085 \times 10^{3} \\
& 4.085 \times 1000
\end{aligned}
$$

$$
\begin{aligned}
3.12 \times 10^{-1} & =0.312 \\
2.445 \times 10^{3} & =2445 \\
0001,04 \times 10^{-4} & =0.000104 \\
6.5_{n} \times 10^{4} & =65000
\end{aligned}
$$

 Space
Homework

- P. 445 \# 4 et 5
- Read p.452-453

What is the
difference between a light year

Convert the following light years to km

$$
\begin{aligned}
& 4.3 \times 9.46 \times 10^{12}=4.0678 \times 10^{13} \\
& 8.8 \times 9.46 \times 10^{12}=8.3248 \times 10^{13} \mathrm{Km} \\
& 26 \times 9.46 \times 10^{12}=2.45 \times 10^{14} \\
& 36 \times 9.46 \times 10^{12}=3.4056 \times 10^{14} \\
& 700 \\
& 900 \\
& 14001.5 \times 10^{10} \\
& 15000000000 \times 9.46 \times 10^{12}=1.419 \times 10^{23}
\end{aligned}
$$

A light year is a measure of distance, $9.46 \times 10^{12} \mathrm{Km}$ that light can travel in one year. A year is $365^{22^{2}}$ days, a measure of time. This is the length of time it takes the Earth to make one revolution around the sun.

If we know that Sirius, the brightest star in the sky is 8.8 light years away, we can multiply by 9.46×10^{12} and determine that is is $8.3248 \times 10^{13} \mathrm{~km}$ away from Earth.
Because it is 8.8 light years away, we also know that it takes 8.8 years for the light from Sirius to actually reach us on Earth and become visible to us.

