

CALCULATING HEATS OF REACTION

Section Review

Objectives

- Apply Hess's law of heat summation to find enthalpy changes for chemical and physical processes
- Calculate enthalpy changes using standard heats of formation

Vocabulary

- Hess's law of heat summation
- standard heat of formation

Key Equation

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

• $\Delta H^0 = \Delta H^0_f$ (products) $-\Delta H^0_f$ (reactants)

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

Hess's law of heat summation states that for a chemical				
equation that can be written as the $\1$ of two or more steps,				
the $\underline{}$ change for the final equation equals the sum of the				
enthalpy changes for the individual steps. Hess's law makes it				
possible to measure the heat of a reaction $\underline{3}$. When a				
reaction is reversed, the sign of ΔH must be <u>4</u> .				
Sometimes it is hard to measure the heat for a reaction. In				

such cases, the $__{5}$ is used to calculate heats of reaction at standard conditions. The standard heat of formation of a compound is the $__6$ in enthalpy that accompanies the formation of <u>7</u> mole of a compound from its elements. The symbol used for standard heat of formation is <u>8</u>. The standard heat of formation of a free element in its standard state is $\underline{9}$. The standard heat of reaction is determined by $\underline{10}$ the $\Delta H_{\rm f}^0$ of all the reactants from the $\Delta H_{\rm f}^0$ of all the products.

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	

Date _____

Part B True-False

Name

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- **11.** The standard heat of formation for a substance is determined at 100°C.
- **12.** Hess's law of heat summation is not related to the law of conservation of energy.
 - **13.** When using Hess's law of heat summation, intermediate reactions are summed and terms are canceled, as in algebra, to arrive at a final equation.

_____ 14. The $\Delta H_{\rm f}^0$ for I₂(g) is zero.

15. The $\Delta H_{\rm f}^0$ for H₂O(*l*) and H₂O(*s*) are the same.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A		Column B
16.	standard heat of formation	a.	symbol for the standard heat of formation
17.	Hess's law of heat summation	b.	the change in enthalpy that accompanies the formation of 1 mole of a compound from its elements
18.	$\Delta H_{ m f}^0$	c.	in going from a particular set of reactants to a particular set of products, the enthalpy change is the same whether the reaction takes place in one step or in a series of steps
19.	ΔH^0 for $\operatorname{Br}_2(g) \to \operatorname{Br}_2(l)$	d.	-30.91 kJ
20.	zero	e.	$\Delta H_{\rm f}^0$ of ${\rm Cl}_2(g)$

Part D Questions and Problems

Answer the following in the space provided.

21. Determine the heat of reaction for the following reaction.

$$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(g)$$

Use the following thermochemical equations.

1) $\operatorname{CuO}(s) \rightarrow \operatorname{Cu}(s) + \frac{1}{2}O_2(g) \quad \Delta H = 155 \text{ kJ}$

- **2)** $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ $\Delta H = 242 \text{ kJ}$
- **22.** Calculate the change in enthalpy for the following reaction using standard heats of formation. (Refer to Table 17.4 in your textbook.)

 $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$