MOLE-MASS AND MOLE-VOLUME

RELATIONSHIPS

Section Review

Objectives

- Convert the mass of a substance to the number of moles of a substance, and the number of moles of a substance to mass
- Calculate the volume of a quantity of gas at STP

Vocabulary

- Avogadro's hypothesis
- standard temperature and pressure (STP)
- molar volume

Key Equations

- mass (grams) = number of moles $\times \frac{\text{mass (grams)}}{1 \text{ mole}}$
- moles = mass (grams) $\times \frac{1 \text{ mole}}{\text{mass (grams)}}$
- $\frac{\text{grams}}{\text{mole}} = \frac{\text{grams}}{\text{L}} \times \frac{22.4 \text{ L}}{1 \text{ mole}}$
- volume of gas = moles of gas $\times \frac{22.4 \text{ L}}{1 \text{ mole}}$

Part A Completion

Use this completion exercise to check your knowledge of the terms and your understanding of the concepts introduced in this section. Each blank can be completed with a term, short phrase, or number.

At STP (0°C and 1 atmosphere pressure), one mole of any gas

occupies a volume of ____ L. This quantity is known as the

2 of the gas. To determine the volume in liters of 2.00 mol

of SO₂ gas at STP, you would use ____3 ___ as a conversion factor.

 $\underline{4}$, expressed in the units g/L, is used as a conversion factor

243

when converting from volume to molar mass. When converting

between numbers of representative particles, masses, and volumes,

you must always convert to ____**5**___ as an intermediate step.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

6. One mole of any gas occupies a volume of 22.4 L.

____ **7.** For a substance of known molar mass, the number of moles of a sample can be calculated from the mass of the sample.

8. The volume occupied by one mole of a gas is dependent on the molar mass of the gas.

_ 9. The volume of a gas at STP can be calculated from the number of molecules of the gas.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column B 10. molar mass a. 22.4 L of a gas at STP 11. standard temperature b. 101.3 kPa or 1 atm 12. molar volume c. 0°C 13. standard pressure d. mass (in grams) of one mole of a substance 14. molar road map e. a means of relating mass, number of representative particles, and gaseous volume of a substance

Part D Problems

Solve the following problems in the space provided. Show your work.

15. What is the density of N_2O_2 , a gas, at STP?

16. What is the mass of two moles of NaCl?

17. How many moles are in 16 grams of O_2 ?

18. What is the volume of 16 grams of O_2 at STP?