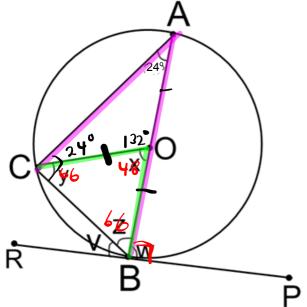


Chapter 8: Notes

$$c^2 = a^2 + b^2$$

$$a^2 = c^2 - b^2$$

(CAT)

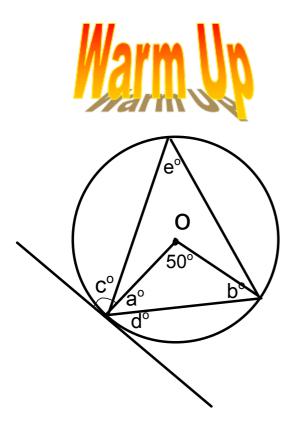

(CyAT)

(OAT)

(EAT)

Do on your own

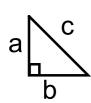
X=<COB=48°(Inc/Cent >, BC)


 $w = \langle OBP = 90^{\circ} (Tang P)$

 $y = \langle OCB = 66^{\circ} (ITT)$

 $z = \langle OBR = 66^{\circ} (ITT)$

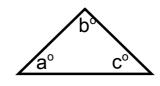
v=<CBR= 24° (SAT)


(or CAT)

$$a^\circ$$
= 65° (ITT)
 b° = 65° (ITT)
 c° = 90° (Tang P)
 d° = 25° (CAT)
 e° = 25° (Inc/cent)

Chapter 8: Notes

Pythagorean theorem

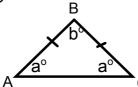


Hyp = ?
$$c^2 = a^2 + b^2$$

Leg = ?
$$a^2 = c^2 - b^2$$

Angle Sum of Triangle Theorem

$$a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}$$


Isosceles Triangle Theorem

Two sides are equal: AB = BC

Base angles are equal:

If
$$a^{\circ} = ?$$

 $a^{\circ} = 180 - b$

If
$$b^{\circ} = ?$$

 $b^{\circ} = 180 - a^{\circ} - a^{\circ}$

Angle Properties

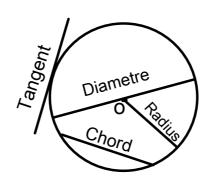
Supplementary Angle Theorem (SAT)

$$a^{\circ} + b^{\circ} = 180^{\circ}$$

Cyclic Angle Theorem (CyAT)

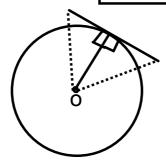
Complimentary Angle Theorem (CAT)

$$a^{\circ}$$
 + b° = 90°


Opposite Angle Theorem

$$a^{\circ} = a^{\circ}$$

 $b^{\circ} = c^{\circ}$

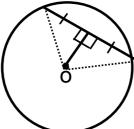

Information about circles

Tangent Property

< ___ = 90° (Tang P)

- a radius hits a tangent at 90°

To solve unknown sides:


Pythagorean Theorem

To solve unknown angles: SATT

Chord Property

a line coming from the centre of the circle

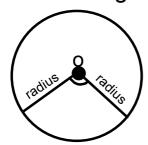
- hits chord at a 90° angle
 - cuts the chord into two equal pieces

If chord lengths are indicted

If 90° is indicated

To solve unknown sides:

Pythagorean Theorem

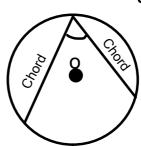

To solve unknown angles:

SATT

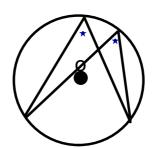
ITT

Circle Properties

Central Angle

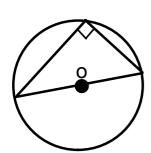


Property # 1: Central & Inscribed Angles

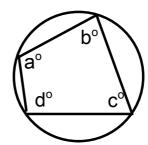


- The central angle is double the inscribed angle
- The inscribed angle is half the central angle

Inscribed Angle

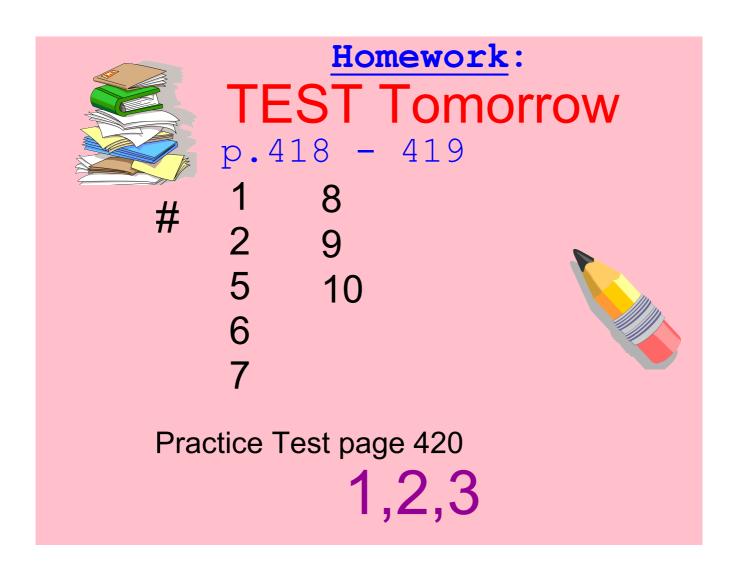


Property # 2: Inscribed Angles


- Inscribed angles coming from the same arc are equal

Property # 3: Inscribed from Diameter

- Inscribed angles coming from the diametre are 90°


Property # 4: Cyclic Quadrilateral

- Opposite angles in a cyclic quad must add up to 180°

$$a^{\circ} + c^{\circ} = 180^{\circ}$$

$$b^{\circ} + d^{\circ} = 180^{\circ}$$

CSI Crime Scene Investigation.mp3

Worksheet - Angles in a Circle.doc