Foundations of Mathematics 11 Unit Test - System of Linear Inequalities

Name:

Multiple Choice [10 Marks]

Circle the letter corresponding to the correct solution.

1. For which inequality is $(-50, -50)$, -50) a possible solution?		
A) $y - 2x \ge 10$	B) $y \le -9 + 2x$	C) <i>y</i> > 9	D) $y < x - 2$

- 2. What is the boundary line for the linear inequality 4x + 2y < 18? B) y = -2x + 18A) y = -4x + 36C) x = -2y + 18D) y = -2x + 9
- 3. What system of linear inequalities is shown here?

5 - 4 -	A) $2x + 3y < 6$ y > 2x - 3
	B) $2x + 3y \le 6$ $y > 2x - 3$
-5 -4 -3 -2 -1 -1 -1 -1 -2 -3 -2 -1 -1 -1 -2 -2 -1 -3 -2 -3 -5 -x -3 -	C) $2x + 3y \le 6$ $y \ge 2x - 3$
	D) $2x + 3y < 6$ $y \ge 2x - 3$

4. Which location best describes where would you find the optimal solutions to an objective function?

A) within the feasible region

C) outside the feasible region

B) along a boundary line

D) at or near the points of intersection

5. Describe the boundary lines for the following system of linear inequalities: $\{y - 3x < 12, x + y \ge 0, x \in \mathbb{R}, y \in \mathbb{R}\}$ A) Solid line along y = 3x + 12; dashed line along y = -xB) Solid line along y = 3x + 12; solid line along y = -x

- C) Dashed line along y = 3x + 12; solid line along y = -x
- D) Dashed line along y = 3x + 12; dashed line along y = -x

- 6. A football stadium has 60 000 seats.
- 70% of the seats are in the lower deck.
- 30% of the seats are in the upper deck.
- At least 40 000 tickets are sold per game.
- A lower deck ticket costs \$100, and an upper deck ticket costs \$60.

Let x represent the number of lower deck tickets. Let y represent the number of upper deck tickets.

How would you write the objective function for revenue, *R*? A) R = 100x + 60yB) R = 30x + 70y

C) R = 60x + 100yD) R = 70x + 30y

7. Which point in the model below would result in the **maximum** value of the objective function H = x - y?

- A) (4, -3)
- B) (4, 5)
- C) (-4, 1)
- D) (1, 1)

Use the following to answer questions 8, 9 & 10

Noah volunteers to fold origami swans and frogs for a display in Mr. Hallihan's Math classroom.

- He has 8 squares of white paper for the swans and 12 squares of green paper for the frogs.
- It takes her 4 min to fold an origami swan and 3 min to fold an origami frog.

• There must be at least two frogs for every swan.

Let f represent the number of frogs. Let s represent the number of swans.

8. What are the restrictions on <i>j</i> A) $f \in \mathbf{R}$, $s \in \mathbf{R}$	f and s? B) $f \in W, s \in W$	C) $f \in I, s \in I$	D) No restrictions
9. Which of the following is a A) $2f \le s$	constraint for this situation? B) $2f \ge s$	C) $f \leq 2s$	D) $f \ge 2s$
10. Which of the following is a A) $f \le 8$	constraint for this situation? B) $f \ge 8$	C) <i>s</i> ≤ 8	D) $s \ge 8$

Open Response [40 Marks]

Show ALL your work in the space provided. Be sure to scale and label your graphs when necessary! ONLY SHADE/STIPPLE(write the word 'stipple' if the area is too big) THE <u>FEASIBLE REGION</u> IN YOUR GRAPHS.

1. a) Graph the following system of linear inequalities: $\{(x, y)|4x - 8 \le 0, x \in I, y \in I\}$ [8] $\{(x, y)|6x + 3y - 18 > 0, x \in I, y \in I\}$

b) Answer each of the following...

i) State a possible solution \rightarrow _____

ii) Is the intersection point a solution? (circle): YES / NO

2. The following algebraic model represents an optimization problem... **Restrictions:** $x \in R$; $y \in R$ **Constraints:** $4x + 6y \ge -12$; $2y \ge x + 10$; $y \le 4$ **Objective Function:** M = 2x - 3y

a) Create a graphical model to represent the problem.

b) What are <u>ALL</u> the vertices of the feasible region? [3]

c) Which point(s) would result in the <u>maximum</u> value of the objective function? What is the value? [2]

Point → _____

Max Value \rightarrow _____

- 3. Anita Summoola has two summer jobs...one at Pita Pit and the other at Robin's Coffee.
- She works no more than a total of 50 h a week. Both jobs allow her to have flexible hours but in whole hours only.
- At the Pita Pit, Anita works no fewer than 25 hours and earns \$10.50/hr.
- At the Robin's Coffee, Anita works at most 20 hours and earns \$12.25/hr.

e) What combination of numbers of hours will allow Anita to maximize her earnings and what will be her earnings? [2] (Show your work to justify your solution)

COMBINATION OF HOURS \rightarrow _____

MAX EARNINGS = \$_____

[9]