\qquad

Multiple Choice [10 Marks]

Circle the letter corresponding to the correct solution.

1. For which inequality is $(-50,-50)$ a possible solution?
A) $y-2 x \geq 10$
B) $y \leq-9+2 x$
C) $y>9$
D) $y<x-2$
2. What is the boundary line for the linear inequality $4 x+2 y<18$?
A) $y=-4 x+36$
B) $y=-2 x+18$
C) $x=-2 y+18$
D) $y=-2 x+9$
3. What system of linear inequalities is shown here?

A) $2 x+3 y<6$ $y>2 x-3$
B) $2 x+3 y \leq 6$ $y>2 x-3$
C) $2 x+3 y \leq 6$ $y \geq 2 x-3$
D) $2 x+3 y<6$
$y \geq 2 x-3$
4. Which location best describes where would you find the optimal solutions to an objective function?
A) within the feasible region
B) along a boundary line
C) outside the feasible region
D) at or near the points of intersection
5. Describe the boundary lines for the following system of linear inequalities: $\{y-3 x<12, x+y \geq 0, x \in \mathrm{R}, y \in \mathrm{R}\}$
A) Solid line along $y=3 x+12$; dashed line along $y=-x$
B) Solid line along $y=3 x+12$; solid line along $y=-x$
C) Dashed line along $y=3 x+12$; solid line along $y=-x$
D) Dashed line along $y=3 x+12$; dashed line along $y=-x$
6. A football stadium has 60000 seats.

- 70% of the seats are in the lower deck.
- 30% of the seats are in the upper deck.
- At least 40000 tickets are sold per game.
- A lower deck ticket costs $\$ 100$, and an upper deck ticket costs $\$ 60$.

Let x represent the number of lower deck tickets. Let y represent the number of upper deck tickets.
How would you write the objective function for revenue, R ?
A) $R=100 x+60 y$
B) $R=30 x+70 y$
C) $R=60 x+100 y$
D) $R=70 x+30 y$
7. Which point in the model below would result in the maximum value of the objective function $H=x-y$?
A) $(4,-3)$
B) $(4,5)$
C) $(-4,1)$
D) $(1,1)$

Use the following to answer questions $8,9 \& 10$
Noah volunteers to fold origami swans and frogs for a display in Mr. Hallihan's Math classroom.

- He has 8 squares of white paper for the swans and 12 squares of green paper for the frogs.
- It takes her 4 min to fold an origami swan and 3 min to fold an origami frog.
- There must be at least two frogs for every swan.

Let f represent the number of frogs. Let s represent the number of swans.
8. What are the restrictions on f and s ?
A) $f \in \mathrm{R}, s \in \mathrm{R}$
B) $f \in \mathrm{~W}, s \in \mathrm{~W}$
C) $f \in \mathrm{I}, s \in \mathrm{I}$
D) No restrictions
9. Which of the following is a constraint for this situation?
A) $2 f \leq \mathrm{s}$
B) $2 f \geq \mathrm{s}$
C) $f \leq 2$ s
D) $f \geq 2 \mathrm{~s}$
10. Which of the following is a constraint for this situation?
A) $f \leq 8$
B) $f \geq 8$
C) $s \leq 8$
D) $s \geq 8$

Open Response [40 Marks]

Show ALL your work in the space provided. Be sure to scale and label your graphs when necessary!
ONLY SHADE/STIPPLE(write the word 'stipple' if the area is too big) THE FEASIBLE REGION IN YOUR GRAPHS.

1. a) Graph the following system of linear inequalities: $\{(x, y) \mid 4 x-8 \leq 0, x \in I, y \in I\}$

$$
\begin{equation*}
\{(x, y) \mid 6 x+3 y-18>0, x \in I, y \in I\} \tag{8}
\end{equation*}
$$

b) Answer each of the following...
i) State a possible solution \rightarrow \qquad ii) Is the intersection point a solution? (circle): YES / NO
2. The following algebraic model represents an optimization problem...

Restrictions: $x \in R ; y \in R$
Constraints: $4 x+6 y \geq-12 ; \quad 2 y \geq x+10 ; y \leq 4$
Objective Function: $M=2 x-3 y$
a) Create a graphical model to represent the problem.

b) What are $\underline{\mathbf{A L L}}$ the vertices of the feasible region?
c) Which point(s) would result in the maximum value of the objective function? What is the value?
3. Anita Summoola has two summer jobs...one at Pita Pit and the other at Robin's Coffee.

- She works no more than a total of 50 h a week. Both jobs allow her to have flexible hours but in whole hours only.
- At the Pita Pit, Anita works no fewer than 25 hours and earns $\$ 10.50 / \mathrm{hr}$.
- At the Robin's Coffee, Anita works at most 20 hours and earns $\$ 12.25 / \mathrm{hr}$.
a) Define the variables and state any restrictions.
b) List the constraints and any other inequalities.
c) Create a graphical model to represent the problem.
d) State the objective function.

Point \rightarrow

he other at
ha have
$\$ 12.50 / \mathrm{hr}$.
$\$ 12.25 r$
e) What combination of numbers of hours will allow Anita to maximize her earnings and what will be her earnings?
(Show your work to justify your solution)

