Curriculum Outcome

- (N5) Determine the square root of positive rational numbers that are perfect squares.
- (N6) Determine an approximate square root of positive rational numbers that are non-perfect squares.
- (SS2) Determine the surface area of composite 3-D objects to solve problems
- (N4) **Explain and apply the order of operations, including exponents, with and without technology.**

Warm Up Grade 9

Find the Surface Area of This Composite Object. Each cube has edge length of 2 cm.

Warm Up Grade 9

Find the Surface Area of This Composite Object. Each cube has edge length of 2 cm.

4 Cubes

Total number of faces = $6 \times 4 = 24$ faces

Total SA = 16 Faces x Area of one face
=
$$16 \times 4 \text{ cm}^2$$

= 64 cm^2

page 30 & 31
questions
4abde

 $A = b \times h$ $A = |x|_{Cm^2}$ Homework Solutions
Page 30

4a) Area of a single face = 1 unit

$$\#$$
 of cubes = 3

Total number of faces =
$$6 \times 3$$

= 18 faces

of overlaps = $2 \longrightarrow 4$ faces

$$18 \text{ faces} - 4 \text{ faces} = 14 \text{ faces}$$

4b) Area of a single face = 1 unit^2

$$# 0f cubes = 4$$

Total number of faces =
$$6 \times 4$$

= 24 faces

$$\#$$
 of overlaps = 3 ----> 6 faces

4c) Area of a single face = 1 unit ^2

$$# 0f cubes = 5$$

Total number of faces =
$$6 \times 5$$

= 30 faces

$$30 \text{ faces} - 8 \text{ faces} = 22 \text{ faces}$$

Total SA = 22 Faces x 1 units²
= 22 units
2

4d) Area of a single face = 1 unit ^2

$$# 0f cubes = 5$$

Total number of faces =
$$6 \times 5$$

= 30 faces

of overlaps =
$$5 - - > 10$$
 faces

$$30 \text{ faces} - 10 \text{ faces} = 20 \text{ faces}$$

Total SA = 20 Faces x 1 units²
= 20 units
2

Homework Solutions Page 30 continued...

4e) Area of a single face = 1 unif

0f cubes = 5

Total number of faces = 6×5 = 30 faces

of overlaps = 4 -----> 8 Faces

30 faces - 8 faces = 22 faces

Total SA = 22 faces x 1units² - = 22 units²

4f) Area of a single face = 1 unif

0f cubes = 6

Total number of faces = 6×6 = 36 faces

of overlaps = 5 -----> 10 Faces

36 faces - 10 faces = 26 faces

Total SA = 26 faces $x 1 units^2$ - = 26 units²

of cubes = 4

```
5i) Area of a single face = L x W
= 1 X 1
= 1 unit<sup>2</sup>
```

Total number of faces = $6 \times 4 = 24$ faces

```
# of overlaps = 3
```

```
Total Area of all cubes = 24 faces - 2 (overlap)
= 24 - 2 (3)
= 24 - 6
= 18 Faces
```

Total SA = 18 Faces x Area of one face = 18 x 1 unit² = 18 units ² Determine the surface area of the composite object.

What effect does the overlap have on the calculation of the surface area?

*count bottom
3cm
4 x l
10 cm
20 cm

STEP 1: You can calculate all of the surface areas of the larger rectangular prism 20, 6, 10 •

Step 2: Then calculate <u>all of the</u> surface areas of the smaller rectangular prisms

Step 3: Is there an overlap? SO must subtract the "overlapped Areas" recall overlap involves "two faces"

subtract 2 x (overlap area)

$$T_{SR} = SA_{big} + SA_{SM} - overlap$$

$$= 760 + 38 - 8$$

$$= 790 \text{ cm}^2$$

