### **Curriculum Outcome**

- (N5) Determine the square root of positive rational numbers that are perfect squares.
- (N6) Determine an approximate square root of positive rational numbers that are non-perfect squares.
- (SS2) Determine the surface area of composite 3-D objects to solve problems
- (N4) \*\*Explain and apply the order of operations, including exponents, with and without technology.\*\*



# Recall



1. Determine the value of  $\sqrt{0.09}$ . (Without a calculator)

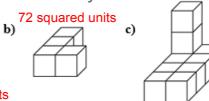
$$\sqrt{\frac{9}{100}} = \frac{3}{10}$$

2. Which fraction is a perfect square? (WITHOUT A CALCULATOR)

a)  $\sqrt{\frac{49}{60}} = \frac{7}{?}$ b)  $\sqrt{\frac{49}{225}} = \frac{7}{15}$ c)  $\frac{28}{225}$ d)  $\frac{7}{15}$ 

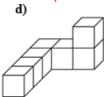
$$\mathbf{a})\sqrt{\frac{49}{60}} = \frac{7}{?}$$

(b) 
$$\sqrt{\frac{49}{225}} = \frac{7}{15}$$
 c)

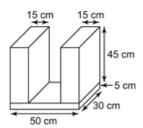

$$\frac{1}{1}$$

#### Lesson 1.3: Surface Areas of Objects Made from Right Rectangular Prisms

1. Each cube has edge length 2 unit. Determine the surface area of each object.



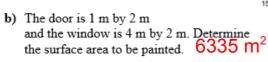

squared units




144 squared units

120 squared units

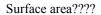



2. Determine the surface area of this composite object.



11 900 squared units

- 3. The local curling rink is shown in the diagram at the right.
  - a) Determine the surface area of the warehouse. (No floor, windows, and door)


6345 m<sup>2</sup>



c) A can of paint covers 300 m<sup>2</sup> and costs \$45. Determine the cost of the paint needed. \$990





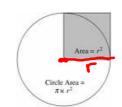




### Other Composite Shapes

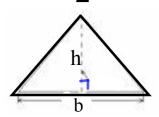
3-D shapes sitting on other 3-D shapes (This will cause an overlap meaning that the entire two or more shapes are not exposed to the surface

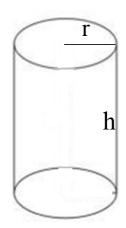
## Area of Shapes


#### Area of a Rectangle

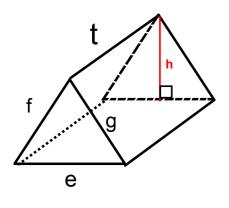
A = length x width




### Area of a Circle


 $A = \pi r^2$ = (3.14) (r)<sup>2</sup>




#### Area of Triangle

 $A = \frac{\text{(base x height)}}{2}$ 





Area of Cylinder = 
$$2\pi r^2 + 2\pi rh$$
  
= 2(3.14) (\_\_\_)<sup>2</sup> + 2(3.14) (\_\_\_)



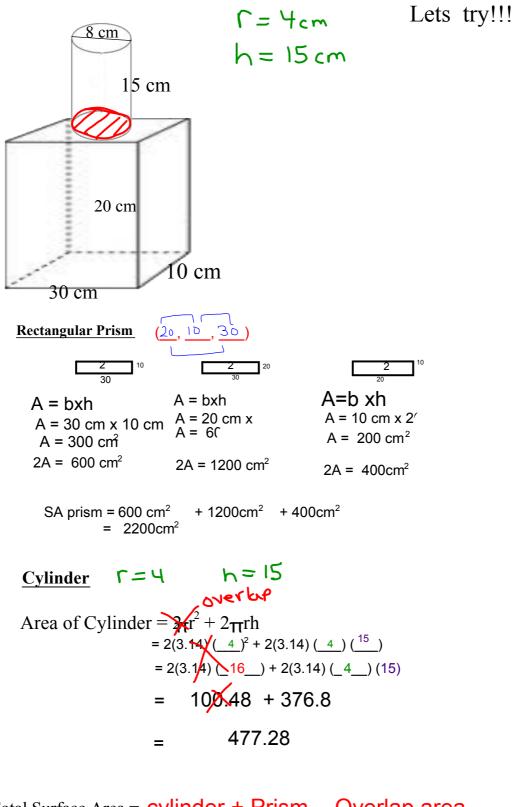


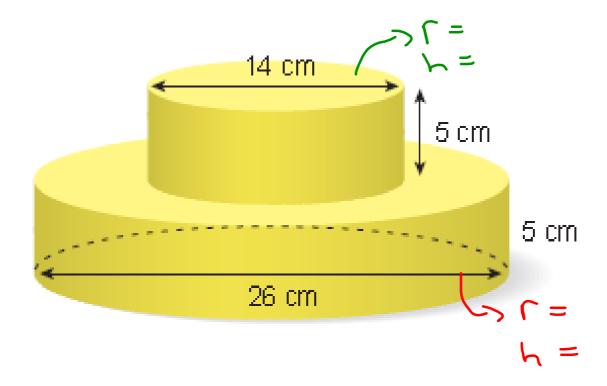
A= (base x height)

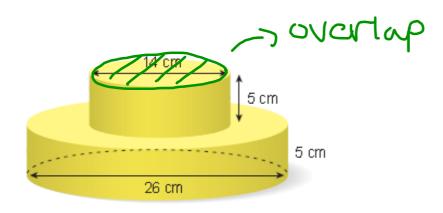


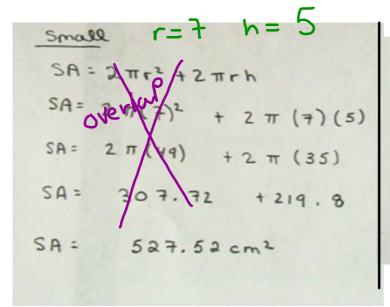
A= (base x height




A= (base x height)





A= (base x height)


Day 52\_Section 1.4 other composite shapes (Surface area) day 1.notebookNovember 20, 2018

How much paint is needed to cover the following shape?









Large;

SA: 
$$2\pi r^2 + 2\pi rh$$
 $2\pi (7)(5)$ 

SA:  $2\pi (13)^2 + 2\pi (13)(5)$ 
 $2\pi (35)$ 

SA:  $2\pi (169) + 2\pi (65)$ 
 $4219.8$ 

SA:  $1061.32 + 408.2$ 

SA:  $1469.52$ 

$$T_{SA} = SA_1 + SA_2 - over lap$$

$$= 527.52 + 1469.52 - 307.72$$

$$= 1689.32 cm^2$$

### Class / Homework

