**OCTOBER 1, 2018** 

**UNIT 2: POWERS AND EXPONENT LAWS** 

SECTION 2.1: WHAT IS A POWER?

K. Sears
MATH 9



### WHAT'S THE POINT OF TODAY'S LESSON?

We will begin working on the Math 9 Specific Curriculum Outcome (SCO) "Numbers 1" OR "N1" which states:

"Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers."



## What does THAT mean???

SCO N1 means that we will learn about the two parts of a power (the base, or "the big number", and the exponent, or "the little number"). We will show what a power means when we write it out using multiplication (ex:  $3^2 = 3 \times 3$ ), and we will use patterns to prove, for example, that  $3^0 = 1$ . Finally, we will use what we know about powers to solve problems.



#### **UNIT 2: POWERS AND EXPONENT LAWS**



(-7) ^ S = -18807.

PLEASE TURN TO PAGE 50 IN MMS9.

# **UNIT 2: VOCABULARY**

1. POWER:



an expression in the form of an, where a is the base and n is the exponent; it represents a product of equal factors.

ex.:  $4 \times 4 \times 4 = 4^3$ 

2. SQUARE NUMBER: a number that can be written as a power with an integer base and an exponent of 2.

ex.: 49 = 7<sup>2</sup> (49 is a square number)

3. CUBE NUMBER: a number that can be written as a power with an integer base and an exponent of 3.

ex.:  $8 = 2^3$ 

(8 is a cube number)

#### 125 CAN BE WRITTEN SEVERAL WAYS:

1. Standard Form: 125

2. As repeated multiplication:  $5 \times 5 \times 5$ 

**3.** As a POWER: 5<sup>3</sup>

(What kind of a number is 125? Think of definition #3...) the #

# PLEASE TURN TO PAGE 53 IN MMS9. LOOK AT EXAMPLE 1 - WRITING POWERS.

How would I write the following examples as POWERS?

1. 
$$6 \times 6 \times 6 \times 6 \times 6 = 6$$

2. 
$$8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8 = 8^{7}$$

PLEASE TURN TO PAGE 54 IN MMS9. LOOK AT EXAMPLE 2 - EVALUATING POWERS.

How would I write the following examples as repeated multiplication and in standard form?

2. 
$$10^5 = 10 \times 10 \times 10 \times 10 \times 10$$
  
=  $100 \times 100 \times 10 \times 10$ 

Let's talk about the ways in which we can use our calculators to evaluate powers.

There are 4 possible ways that I know of. Please let me know if there are others.)

$$2^6 = 206$$
 $= 64$ 
 $7^5 = 16807$ 

Examples 1 and 2 on pages 53 and 54 showed powers with positive integer bases; however, a power can also be negative or have a base that is a negative integer.

$$(-3)^4 - 3^4 - (-3^4)$$
= 81 -81

A quick review of "double signs"...

What do each of the following actually mean?

## WHAT IS THE DIFFERENCE BETWEEN...



# **DEALING WITH NEGATIVE BASES ON YOUR CALCULATOR:**

2.  $(-2)^6$ 

# **Examples:**

1. 
$$(-2)^3$$
=  $-8$ 

$$= -8$$

$$= 64$$
3.  $(-4)^2$ 
4.  $(-4)^5$ 

$$= 64$$

$$= 64$$

PLEASE TURN TO PAGE 54 IN MMS9. LOOK AT EXAMPLE 3 - EVALUATING EXPRESSIONS INVOLVING NEGATIVE SIGNS.

Identify the base in each of these powers, then evaluate the power.

- 1. -5<sup>4</sup>: Base =  $\frac{5}{\text{Repeated Multiplication}}$  =  $\frac{5 \times 5 \times 5 \times 5}{\text{Standard Form}}$  =  $\frac{6 \times 5}{\text{Constant Position}}$

What is the square root of 9?



What ARE the square roots of 9?





3



# An example where **ONLY** the **PRINCIPAL** square root is appropriate:



12 cm (not -12 cm)

## PLEASE TURN TO PAGE 55 IN MMS9.

"Discuss the Ideas":

1.

2.

**3.** 

# **CONCEPT REINFORCEMENT:**

# **MMS9:**

PAGE 55: #7, 8 and 9

PAGE 56: #11, 12, 13, 14 and 16

PAGE 57: #18, 19, 20 and 21a