OCTOBER 2, 2018

UNIT 2: POWERS AND EXPONENT LAWS

SECTION 2.2: POWERS OF 10 AND THE ZERO EXPONENT

K. Sears

MATH 9

Oct 1-9:44 AM

WHAT'S THE POINT OF TODAY'S LESSON?

We will continue working on the Math 9 Specific Curriculum Outcome (SCO) "Numbers 1" OR "N1" which states:

"Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers."

What does THAT mean???

SCO N1 means that we will learn about the two parts of a power (the base, or "the big number", and the exponent, or "the little number"). We will show what a power means when we write it out using multiplication (ex: $3^2 = 3 \times 3$), and we will use patterns to prove, for example, that $3^0 = 1$. Finally, we will use what we know about powers to solve problems.

Oct 1-9:44 AM

WARM UP:

Evaluate each expression.

i)
$$-3^2$$
 ii) $-(3)^2$ iii) $-(-3)^2$ iv) $(-3)^2$ -9 -9 -9

HOMEWORK QUESTIONS? (Pages 55 - 57, #7-9, 10-14, 16, 18, 19, 20, 21a

Oct 2-3:36 PM

SECTION 2.2: POWERS OF 10 AND THE ZERO EXPONENT

Please copy and complete the following table:

EXPONENT	POWER (use a base of 2)	STANDARD FORM
5	25	32
4	24	16
3	2 ³	· 🏀
2	ລັ	}
1	2'	2
	స్థ	1

Please copy and complete the following table:

EXPONENT	POWER (use a base of 3)	STANDARD FORM
5	35	243
4	34	81
3	33	27
2	32	9
1	3	3
	3°	1

Oct 17-12:52 PM

Please copy and complete the following table:

2120	EXPONENT	POWER [use a base of (-5)]	STANDARD FORM
2630	5	(-5) ⁵	-3125
	4	(-5)4	625
(1+2)	3	(- 5) ³	-125
$\begin{pmatrix} 1+2\\2&3\end{pmatrix}$	2	$(-5)^2$	25
=1	1	(-5)'	-5
		(~5)°	l
(0°6) 0:	-		

Oct 17-12:55 PM

UNIT 2, 2nd PAGE: "EXPONENT LAWS"

1. ZERO EXPONENT LAW A power with an integer base (other than 0) and an exponent of 0 is equal to 1. We express this law as: a = 1; $a \neq 0$.

Ex.:
$$2^0 = 1$$

 $3^0 = 1$
 $(-5)^0 = 1$
 $-4^0 = -1$

Oct 17-12:56 PM

PLEASE TURN TO PAGE 59 IN MMS9. LOOK AT EXAMPLE 1 - EVALUATING POWERS WITH EXPONENT ZERO.

Evaluate each expression:

1.
$$13^0 = 1$$

2.
$$(-15)^0 = \frac{1}{2}$$

3.
$$-7^0 = -1$$

4.
$$-(-8^{\circ}) = -(-1)$$

1.
$$13^{0} = 1$$

2. $(-15)^{0} = 1$
3. $-7^{0} = -1$
4. $-(-8^{0}) = -(-1)$
5. $[-2^{2} + 3^{3} \times (-5)^{5} \div (-10)^{8}]^{0} = 1$

PLEASE TURN TO PAGE 60 IN MMS9. LOOK AT EXAMPLE 2 - WRITING NUMBERS USING POWERS OF TEN.

Write the following numbers using powers of 10:

1.
$$8678 = (8 \times 1000) + (6 \times 100) + (7 \times 10) + (8 \times 1)$$

= $(8 \times 10^{3}) + (6 \times 10^{3}) + (7 \times 10^{1}) + (8 \times 10^{0})$

2. 12 935 =
$$(1 \times 10^{4}) + (2 \times 10^{3}) + (9 \times 10^{3}) + (3 \times 10^{1}) + (5 \times 10^{0})$$

$$3.403 =$$

Oct 17-1:05 PM

PLEASE TURN TO PAGE 61 IN MMS9.

"Discuss the Ideas":

2. "Power of 10?" Can be represented by a base of ten.

$$100 = 10^2$$
 billon = 10^9
 $1000 \ge 10^3$ $10^9 = 1$
 $1000 \ge 10^6$ $10^4 = 1000$

CONCEPT REINFORCEMENT: MMS9: PAGE 61: #4, 5, 6, 7, 8, 9, 10, 11, and 12

Oct 17-1:08 PM