Curriculum Outcome

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.

(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly:

"What does an exponent do to a number"

Warm Up Grade 9

Write the following as a repeated multiple and evaluate

$$\frac{1}{(-5)^{4}}$$
(-5)(-5)(-5)(-5)
= 625

1)
$$(-5)^{4}$$
2) -2^{5}
(-5) $(-5)(-5)(-5)$
= $(-2)^{2}(-2)$

3)
$$-(7)^3$$

 $-(7)^3$
 $-(7)^3$
 $= -343$

exponent: 4 Base (-5)

exponent: 5 Base

exponent: 3 Base

Write as a power then evaluate

$$= (5)^6$$

2)
$$-(-2)(-2)(-3)(-3)(-3)$$

= $-(-2)^{2}(-3)^{3}$
= $-(-2)^{2}(-3)^{3}$
= $-(-2)^{3}(-3)^{3}$

$$-(x)(x)(y)(y)(y)(y)(y)$$

$$-(x)^3(y)^5$$

Write 64 as a power of 4

a) 42

b) 43

c) 44

d) 4-3

128

$$2^{\frac{1}{2}} = 128$$

Write 279 936 as a power of 6

Write 16 as a power:

Page 55-57

15,16,17ac,18,20de,21a

Worksheet
All questions

1.

3.

4.

5.

6.

7.

8. 9.

aster 2.17 Extra Practice 1 sson 2.1: What Is a Power?				
Use repeated	multiplic	ation to show	v why 35 is not the same as 5	53.
Complete this	table.			
Power	Base	Exponent	Repeated Multiplication	Standard Form
4 ⁴				
(-10)3				
	-6	2		
			1×1×1×1×1	
	10 × 10 -8) ower as re	epeated multi	b) 3×3×3×3×3× d) -(8×8×8) f) -(-8)(-8)(-8) plication, then evaluate. d) (-5) ⁵	3
	ackets ne wer is ye	eded? es, what purp	ose do the brackets serve? c) $-(-6)^5$ d) (-6^5)	
			itive or negative, then evaluated) -(-3) ³	ate.
Is the value o	f-2 ⁴ diff	ferent from th	ne value of (-2) ⁴ ? Explain.	
a) Express th	he numbe paper. Dr	er of stamps a aw a picture	The total value of a sheet on a power and in standard for to represent this power.	

Name

Date