Curriculum Outcome

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.

(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly: "Powers of tens and the ZERO exponent"

Warm Up Grade 9

Write the following as a repeated multiple and evaluate

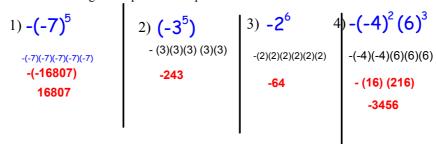
2)
$$(-3^5)$$
 3) -2^6 4) $-(-4)^2(6)^3$

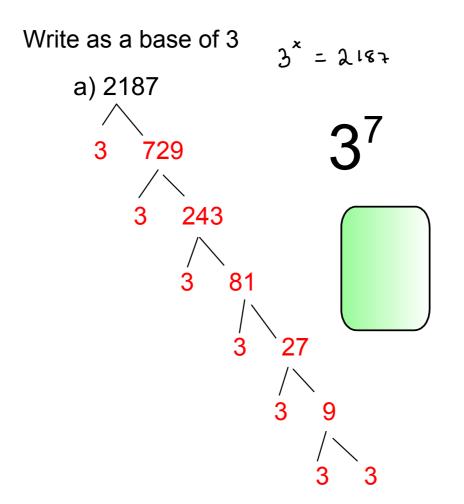
Write as a power then evaluate

1)
$$(-4)(-4)(4)(4)(-5)(-5)$$
 2) $-(3)(3)(-7)(-7)(-7)$

$$(3)(3)(-7)(-7)(-7)$$

Write as a base of 3


a) 2187


Warm Up Grade 9

Write the following as a repeated multiple and evaluate

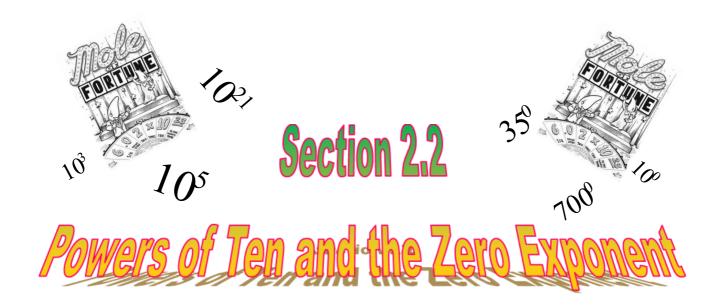
Write as a power then evaluate

Me again... Try these!

Page 56 #17ac,18,19,20,21,23 Worksheet (on next slide) 1.

2. 3.

4.


5.

6.

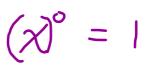
7.

8. 9.

			Nan	ne	Date		
N	laster 2.17	Ext	ra Practi	ice 1			
Le	sson 2.1: W	/hat Is	a Power?				
1.	Identify the label 1	base of ea b) 2 ⁷		5) ⁴ d) -7 ⁰			
2.	Use repeated	multiplic	ation to show	w why 35 is not the same as 5	3.		
3.	Complete this table.						
	Power	Base	Exponent	Repeated Multiplication	Standard Form		
	44						
	$(-10)^3$						
		-6	2				
				$1\times1\times1\times1\times1$			
4 .		< 10 × 10 -8)	epeated mult	n evaluate. b) 3 × 3 × 3 × 3 × 3 × 3 × 3 × d) -(8 × 8 × 8) f) -(-8)(-8)(-8) iplication, then evaluate. d) (-5) ⁵	3		
6.	 Evaluate each power. For each power: Are the brackets needed? If your answer is yes, what purpose do the brackets serve? a) (-6)⁵ b) -(6)⁵ c) -(-6)⁵ d) (-6⁵) 						
7.				itive or negative, then evaluated d) -(-3) ³	ite.		
8.	Is the value of -2^4 different from the value of $(-2)^4$? Explain.						
9.	a) Express t	he numbe paper. Di	er of stamps aw a picture	t. The total value of a sheet of as a power and in standard for to represent this power. ?			

Avogadro's number = 6.0221415×10^{23}

The speed of light = 2.99 792 458 × 10^8 m / s


Temperature of the Sun's Core = $1.5 \times 10^{\circ}$ C since 15000000 kelvin = 14999726.85 degree Celsius

Light years= $4.96 \times 10^{12} \text{ km}$

Distance related to Powers of 10 http://vimeo.com/819138

Any number (except 0) with an exponent 0 will equal 1

$$2^{0} = 1$$

 $13^{0} = 1$
 $199^{0} = 1$
 $(-6)^{0} = 1$

Why???

Zero Exponent LAW

A power with a base not equal to zero, and an exponent of 0 is equal to 1

Any number raised to the power of ZERO is equal to 1

$$x^{0} = 1$$

$$(2007)^{\circ} = 1$$

$$(-56)^{\circ} = 1$$

$$-(2)^{\circ} = -1$$

$$-(-5)^{\circ} = -1$$

$$-(2)^{3}(-5)^{0}$$

$$-(8)(1)$$

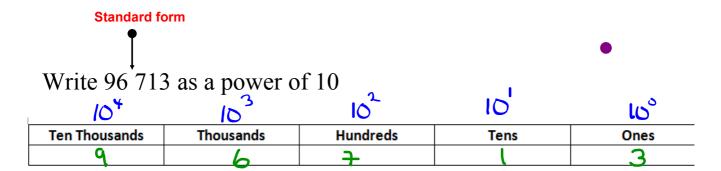
$$= -8$$

Read this number to me

426

Four hundred Twenty Six

In elementary school you may have expressed it in this form


400 + 20 + 6

Powers of 10 page 59

Number in Words	Standard Form	Power
One billion	1 000 000 000	10 ⁹
One hundred million	100 000 000	108
Ten million	10 000 000	10 ⁷
One million	1 000 000	10 ⁶
One hundred thousand	100 000	10 ⁵
Ten thousand	10 000	10 ⁴
One thousand	1 000	10 ³
One hundred	100	10 ²
Ten	10	10 ¹
One	1 -	10 ⁰

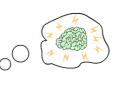
*Image taken from "Math Makes Sense 9" page 59, copyright to pearson education Canada

Writing Numbers Using Powers of Ten

Expanded form:

Powers of ten form:

Powers of ten form:
$$(9 \times 10^4) + (6 \times 10^3) + (7 \times 10^7) + (1 \times 10^7) + (3 \times 10^9)$$


Standard form

Write in powers of ten form:

$$(7 \times 10^6) + (6 \times 10^5) + (5 \times 10^3) + (4 \times 10^2) + (4 \times 10^2)$$

$$(5 \times 10^4) + (3 \times 10^2) + (4 \times 10^0)$$

Write in standard form:

PRACTICE TIME

Page 61- 62

4(a, b)

5(a, b, c, d)

#6(a, c, e)

#8(a, c, e)

#9(a, c, e)

#10 all

#11

#13