Curriculum Outcome

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.

(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly:

"Laws of exponents:

What happens to the exponent when you multiply like bases?"

Warm Up Grade 9

- 1) Write the following as a repeated multiple and evaluate
 - a) $(-3)^5$

- b) $-(-2)^3$ c) $-(-2)^6$ d) $-(3)^0(-4)^3$
- 2) Write as a power then evaluate
- a) -(2)(2)(2)(-3)(-3)(3)(3) b) (-5)(-5)(4)(4)(4)(4)(4)
- 3) Write the following as a powers of 10:
 - a) 68 706 324
- 4) Write the following in standard form:
 - a) $(5 \times 10^4) + (9 \times 10^2) + (7 \times 10^1) + (6 \times 10^0)$

Warm Up Grade 9

1) Write the following as a repeated multiple and evaluate

2) Write as a power then evaluate

a)
$$-(2)(2)(2)(-3)(-3)(3)(3)$$

= $-(2)^3(-3)^2(3)^2$
= $-(8)(9)(9)$
= -648
b) $(-5)(-5)(4)(4)(4)(4)(4)(4)$
= $(-5)^2(4)^5$
= $(25)(1024)$
= $(25)(1024)$

3) Write the following as a powers of 10:

a)
$$68706324$$
= $(6 \times 10^7) + (8 \times 10^6) + (7 \times 10^5) + (6 \times 10^3) + (3 \times 10^2) + (2 \times 10^1) + (4 \times 10^0)$

4) Write the following in standard form:

a)
$$(5 \times 10^4) + (9 \times 10^2) + (7 \times 10^1) + (6 \times 10^0)$$

50 976

$$\frac{-15+3-13}{3\times 2-7^{0}}$$
Top:
$$-15+3-13 = 3\times 2-7^{0}$$

$$= -12-13 = 3\times 2-1$$

$$= -25 = 6-1$$

$$= 5$$
Top
bottom = $-\frac{25}{5} = -\frac{5}{5}$

$$5 - (-3)^{3}$$

$$= 5 + (+27)$$

$$= 30$$

THERE IS A huge DIFFERENCE!

-5 ²	There			$(-5)^2$
$(-1)5^2$	is a negative		7	(= \ (= \
(-1)25	one being multiplied	-5 ²	(-5) ²	(-5)(-5)
-25	by the 5^2 .	TT	11,	25

1. -4^2

 $2. (-3)^2$

3. $(-2)^3$

BEDMAS

$$[3 + (-3)^{0} - 5(3-7)^{2}] + 1$$

$$[3 + (-3)^{0} - 5(-4)^{2}] + 1$$

$$[3 + (1) - 5(16)] + 1$$

$$[3 + (1) - 80] + 1$$

$$[-76] - 76$$

$$[(-4+(+3))^{2}]^{2} - (-5^{3}+2)^{3}$$

$$[(-1)^{2}]^{2} - (-125+2)^{3}$$

$$[(1)]^{2} - (-122)^{3}$$

$$[+1860867)$$

Class/Homework

Page 66-68

SHOW WORK