#### **Curriculum Outcome**

(N1) Demonstrate an understanding of powers with integral bases (excluding base 0) and whole number exponents by: representing repeated multiplication using powers; using patterns to show that a power with an exponent of zero is equal to one; solving problems involving powers.

(N2) Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents.

Student Friendly:
"Learning the laws of Exponents"
Simplifying expressions before we try to evaluate them.



Simplify then Evaluate

1) 
$$(-2)^7 \div (-2)^3 - (-2)^5 \div (-2)^2$$

2) 
$$(-4)^9 \div (-4)^5 + (-4)^5 \div (-4)^2$$

3) 
$$2^4(2^3 \div 2^2) - 4^0$$
  
 $3(3^4 + 2^2)$ 

$$\chi^{a} = 1$$

$$(\chi^{a})(\chi^{b}) = \chi^{a+b}$$

$$\chi^{a} \div \chi^{b} = \chi^{a-b}$$



Simplify then Evaluate

4



Simplify then Evaluate

2) 
$$(-4)^9 \div (-4)^5 + (-4)^5 \div (-4)^2$$

$$(-4)^4 + (-4)^3$$

$$256 + (-64)$$

$$= 192$$



Simplify then Evaluate

3) 
$$2^4(2^3 \div 2^2) - 4^0$$
  
 $3(3^4 + 2^2)$ 

$$2^{4}(2^{3} \div 2^{2}) - 4^{\circ}$$
 $2^{4}(2^{1})$ 
 $2^{5} - 4^{\circ}$ 

$$\frac{2^{5}-4^{\circ}}{3(3^{4}+2^{2})} = \frac{32-1}{3(81+4)} = \frac{31}{255} = 0.1215$$

$$3(85)$$





#### Fill in the following chart

| Power                            | As Repeated<br>Multiplication                                                                                                                | As a Product of Factors | As a power |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|
| $(3^2)^5$                        | (3 <sup>2</sup> )(3 <sup>2</sup> )(3 <sup>2</sup> )(3 <sup>2</sup> )<br>(3 <sup>2</sup> )(3 <sup>2</sup> )(3 <sup>2</sup> )(3 <sup>2</sup> ) | 2×5                     | 310        |
| (4 <sup>2</sup> / <sub>2</sub> ) | (42)(42)(42)<br>404 • 4.4 • 404                                                                                                              | 2×3                     | 4          |
| [(-2)4]3                         |                                                                                                                                              |                         |            |



### Exponent Law for a Power of a Power



To raise a power to a power, multiply the exponents.



$$(a^m)^n = a^{mn}$$



example : 
$$(2^5)^3 = 2^{15}$$



### Try this

Express the following as a single power

1) 
$$(5^7)^8$$
 2)  $(10^2)^3$   
=  $5^{56}$  =  $10^6$ 

1) 
$$(5^7)^8$$
 2)  $(10^2)^3$ 



3) 
$$[(-2)^4]^3$$
  
=  $(-2)^{12}$ 

Express the following as a single power then evaluate

1) 
$$(2^3)^2$$
 2)  $(5^2)^3$ 

$$(5^2)^3$$

3) 
$$[(-3)^2]^4$$

$$= (-3)^8$$

#### Fill in the following chart

| Power                | As Repeated<br>Multiplication                                                                                        | As a Product of<br>Factors | As a product of<br>Powers |
|----------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|
| $(2^3 \times 3^2)^2$ | Multiplication $\left(2^3 \times 3^2\right) \left(2^3 \times 3^2\right)$ $1:2\cdot2 = 3\cdot3$ $1:2\cdot2 = 3\cdot3$ | 23x2 2x2                   | 2° × 3 <sup>4</sup>       |
|                      |                                                                                                                      |                            |                           |
| $((-3)\times5)^2$    |                                                                                                                      |                            |                           |

### Exponent Law for a Power of a Product



$$(ab)^m = a^m_{\underline{x}}b^m$$

example

$$\left(7^3 \times 2^5\right)^4 = 7^1 \times 2^{20}$$

## What about a power of a quotient?

Let's Investigate

$$\left(\frac{4}{5}\right)^3 = \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} = \frac{4^3}{5^3}$$

$$\left(\frac{4^2}{5^4}\right)^3 = \frac{4^6}{5^{12}}$$

What did you discover?

### Exponent Law for a Power of a Quotient



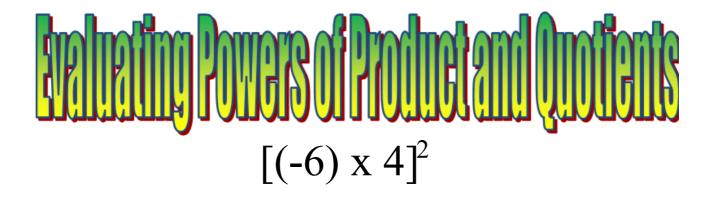
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 BUT  $b \neq 0$ 



### examples o

$$\left[\frac{4^3}{5^2}\right]^{\frac{1}{7}} = \frac{4^{21}}{5^{14}}$$

$$\left[2^{8} + 3^{2}\right]^{2} = 2^{16} \div 3^{4}$$



#### Method 1

Use the exponent law for a power of a product

$$[(-6)^{3} \times 4]^{2}$$

$$= (-6)^{3} \times (4)^{2}$$

$$= 3^{6} \times 16$$

$$= 576$$

#### Method 2

Use the order of operations

$$[(-6) \times 4]^{2}$$

$$= [-24]^{2}$$

$$= 576$$

#### You Decide

Try some more (use which ever method you want)

2) 
$$-(5 \times 2)^3$$

3) 
$$\left(\frac{21}{-3}\right)^3$$

# 

$$(5 \times 2)^{3} + (2^{8} \div 2^{5})^{4}$$

$$(5 \times 2)^{3} + (2^{8} \div 2^{5})^{4}$$

$$(3^{3} + (2^{3})^{4})^{4}$$

$$(2^{8} \div 2^{5})^{4}$$

$$(4^{2} \times 4^{3})^{2} - (5^{4} \cdot 5^{2})^{2}$$
  
 $(4^{5})^{2} - (5^{2})^{2}$   
 $(4^{5})^{2} - (5^{2})^{2}$ 

$$[(-2)^{3} \times (-2)^{2}]^{2} - [(-3)^{3} \cdot (-3)^{2}]^{4}$$

$$(-2^{5})^{3} - (-3^{5})^{4}$$

$$(-2^{5})^{6} - (-3^{5})^{4}$$