atic Equations: Review

r Section

PLE CHOICE

1. ANS: A

				•	DIF.	Average	OBJ:	Section 4.1
	NAT:	RF 5	TOP:	Graphical Solu	tions o	of Quadratic Eq	uations	
	KEY:	two real roots		-	•	- Quadratic Eq	uations	•
2.	ANS:	D	PTS:	1	DIF:	Easy	OBI:	Section 4.2
	NAT:	2000 E	TOP:	Factoring Quad	dratic I	Equations		factor trinomial
3.	ANS:		PTS:	1	DIF:			Section 4.2
	NAT:	RF 5					KEY:	factor trinomial
4.	ANS:	15	PTS:					Section 4.2
		RF 5	TOP:	Factoring Quad	dratic I			solve trinomial
5.	ANS:					Easy		
	NAT:	RF 5	TOP:					solve factored trinomial
6.	ANS:	Α				Easy		
	NAT:	RF 5	TOP:	Solving Quadr				
	KEY: perfect square trinomial							
7.	ANS:	C	PTS:	1	DIF:	Average	OBJ:	Section 4.3
		RF 5	TOP:	Solving Quadr	atic Ec	quations by Con	npleting	g the Square
	KEY:	vertext form						
8.	ANS:		PTS:	1	DIF:	Difficult	OBJ:	Section 4.4
	NAT:	RF 5	TOP:	The Quadratic Formula		KEY:	quadratic formula	
9.	ANS:	C	PTS:	1	DIF:	Average	OBJ:	Section 4.4
	NAT:	RF 5	TOP:	The Quadratic	Formu	ıla	KEY:	quadratic formula extraneous root

DIF: Average

DIF: Difficult

DIF: Average

OBJ: Section 4.1

OBJ: Section 4.4

OBJ: Section 4.4

KEY: x-intercepts

PLETION

10. ANS: D

11. ANS: B

NAT: RF 5

NAT: RF 5

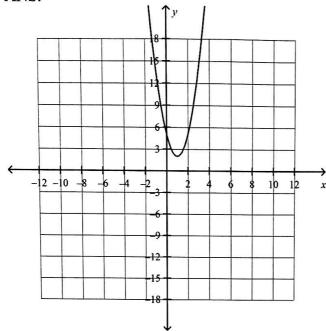
8		0.75 2 0.05 1.5
1.	ANS:	$y = -0.75x^2 - 2.25x - 1.5$

PTS: 1

PTS: 1

KEY: quadratic formula | parabolic motion

OBJ: Section 4.1 NAT: RF 5 DIF: Average PTS: 1


TOP: The Quadratic Formula

TOP: The Quadratic Formula

TOP: Graphical Solutions of Quadratic Equations KEY: roots of quadratic equation

SHORT ANSWER

1. ANS:

There are no zeros.

PTS: 1

DIF: Average

OBJ: Section 4.1 NAT: RF 5

TOP: Graphical Solutions of Quadratic Equations

KEY: zeros | x-intercepts

2. ANS:

- **a)** k = 20.25
- **b)** k < 20.25
- c) k > 20.25

PTS: 1

DIF: Difficult

OBJ: Section 4.4

NAT: RF 5

TOP: The Quadratic Formula

KEY: number of roots

Rearrange the equation so all terms are on the same side:

$$3x^2 - 8x + 4 = 0$$

Calculate the discriminant $b^2 - 4ac$:

$$(-8)^2 - 4(3)(4) = 64 - 48$$

Since the discriminant is positive (greater than zero), the equation has 2 real roots.

a)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{8 \pm \sqrt{16}}{2(3)}$$

$$=\frac{8\pm4}{6}$$

$$= 2$$
 and $\frac{2}{3}$

b)
$$3x^2 - 8x + 4 = 0$$

$$(3x-2)(x-2) = 0$$

$$3x - 2 = 0 \qquad x - 2 = 0$$

$$3x = 2 \qquad \qquad x = 2$$

$$x = \frac{2}{3}$$

DIF: Average

OBJ: Section 4.3 | Section 4.4

NAT: RF 5

TOP: Factoring Quadratic Equations | The Quadratic Formula

KEY: roots of quadratic equation | solve factored trinomial

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{10 \pm \sqrt{(-10)^2 - 4(3)(6)}}{2(3)}$$

$$= \frac{10 \pm \sqrt{100 - 72}}{6}$$

$$= \frac{10 \pm \sqrt{28}}{6}$$

$$= \frac{10 \pm 2\sqrt{7}}{6}$$

$$= \frac{5 \pm \sqrt{7}}{3}$$

$$= \frac{5 + \sqrt{7}}{3} \text{ and } \frac{5 - \sqrt{7}}{3}$$

PTS: 1

DIF: Average

OBJ: Section 4.4 NAT: RF 5

TOP: The Quadratic Formula

KEY: roots of quadratic equation | quadratic formula

5. ANS:

The x-intercepts are -2 and 3. These correspond to factors of (x+2) and (x-3). The equation is of the form y = a(x+2)(x-3).

Expand and simplify the right side of the equation:

$$y = a(x+2)(x-3)$$

$$=a(x^2-x-6)$$

Substitute the known point on the curve (0.5, -6.25) to determine the value of a:

$$y = a(x^2 - x - 6)$$

$$-6.25 = a[(0.5)^2 - 0.5 - 6]$$

$$-6.25 = a(0.25 - 6.5)$$

$$-6.25 = a(-6.25)$$

$$a = 1$$

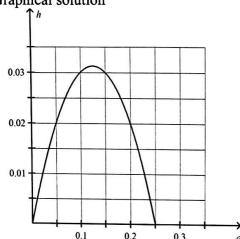
The value of a is 1, so the equation is $y = x^2 - x - 6$.

PTS: 1

DIF: Easy

OBJ: Section 4.1

NAT: RF 5


TOP: Graphical Solutions of Quadratic Equations

KEY: quadratic function | parabola

ROBLEM

1. ANS:

Graphical solution

Determine the zeros of the function (or roots of the equation) by setting h = 0 and then factoring the equation:

$$0 = -2d^2 + 0.5d$$

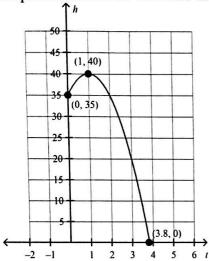
$$0 = d(-2d + 0.5)$$

$$d = 0$$
 or $-2d + 0.5 = 0$

$$d = 0$$
 or $d = 0.25$

The ball travels 0.25 m or 25 cm horizontally.

PTS: 1


DIF: Difficult

OBJ: Section 4.1 | Section 4.2

NAT: RF 5

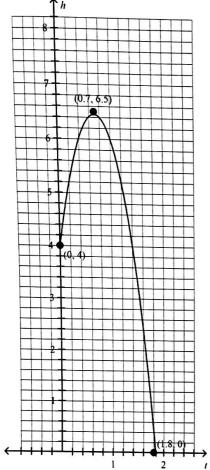
TOP: Graphical Solutions of Ouadratic Fountions | Footoning Out 1...

Graph the relation to visualize the situation.

From the graph:

- a) The maximum height of the ball is 40 m.
- b) It takes 1 s to reach the maximum height.
- **c)** The *t*-intercept is approximately 3.8. The ball hits the ground after about 3.8 s. From the equation:
- d) When t = 0, h = 35. The bridge is 35 m above the river.

PTS: 1


DIF: Average

OBJ: Section 4.1

NAT: RF 5

TOP: Graphical Solutions of Quadratic Equations KEY: maximum | x-intercepts | parabolic motion

Graph the relation to visualize the situation.

From the graph:

- a) The maximum height is about 6.5 m.
- **b)** It takes about 0.7 s to reach the maximum height.
- c) The t-intercept is about 1.8. It takes Nina about 1.8 s to enter the water.
- d) Substituting t = 0 into the equation, or reading from the graph at t = 0, h = 4. So, the board is 4 m above the water.

PTS: 1

DIF: Difficult

OBJ: Section 4.1

NAT: RF 5

TOP: Graphical Solutions of Quadratic Equations KEY: maximum | x-intercepts | parabolic motion

Let x represent the first number and x + 3 represent the second.

Then,

$$x^2 + (x+3)^2 = 89$$

$$x^2 + x^2 + 6x + 9 = 89$$

$$2x^2 + 6x - 80 = 0$$

$$x^2 + 3x - 40 = 0$$

$$(x+8)(x-5)=0$$

$$x = 5 \text{ or } x = -8$$

Since the result is a whole number, the negative value is rejected and the numbers are 5 and 8.

PTS: 1

DIF: Easy

OBJ: Section 4.2

NAT: RF 5

TOP: Factoring Quadratic Equations

KEY: factor quadratic

5. ANS:

Use the Pythagorean theorem.

$$(x+4)^2 + x^2 = 20^2$$

$$x^2 + 8x + 16 + x^2 = 400$$

$$2x^2 + 8x - 384 = 0$$

Factor the trinomial to find the zeros of the quadratic relation.

$$2x^2 + 8x - 384 = 0$$

$$x^2 + 4x - 192 = 0$$

$$(x+16)(x-12)=0$$

$$x = -16$$
 or $x = 12$

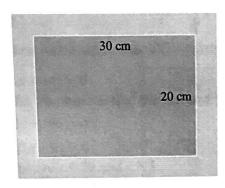
The zeros are -16 and 12.

Since a negative distance is not reasonable, the value for x is 12.

The dimensions of the rectangle are 12 cm by 16 cm.

PTS: 1

DIF: Difficult


OBJ: Section 4.2

NAT: RF 5

TOP: Factoring Quadratic Equations

KEY: roots of quadratic equation

Sketch a diagram to visualize the situation.

The area of the photo is $30 \text{ cm} \times 20 \text{ cm} = 600 \text{ cm}^2$. The area of the border is four times this or 2400 cm². Therefore, the area of the photo and border is 3000 cm^2 .

Let x be the width of the border, in centimetres.

The outside dimensions of the border are (30 + 2x) by (20 + 2x).

$$(30+2x)(20+2x) = 3000$$

$$600 + 60x + 40x + 4x^2 = 3000$$

$$4x^2 + 100x - 2400 = 0$$

$$4(x^2 + 25x - 600) = 0$$

$$(x+40)(x-15)=0$$

$$x = -40 \text{ or } x = 15$$

The zeros are at x = -40 and x = 15. Discard the negative zero.

The width of the border is 15 cm.

The outside dimensions of the border are 60 cm by 50 cm.

PTS: 1

DIF: Average

OBJ: Section 4.2

NAT: RF 5

TOP: Factoring Quadratic Equations

KEY: roots of quadratic equation

Let x centimetres be the length of edging cut off.

The measures of the cut pieces of edging are 20 - x, 41 - x, and 44 - x.

Since they form a right triangle, use the Pythagorean theorem.

$$(44-x)^2 = (20-x)^2 + (41-x)^2$$

$$1936 - 88x + x^2 = (400 - 40x + x^2) + (1681 - 82x + x^2)$$

$$x^2 - 34x + 145 = 0$$

Factor the trinomial to find the zeros of the quadratic relation.

$$x^2 - 34x + 145 = 0$$

$$(x-29)(x-5)=0$$

The zeros are x = 29 and x = 5.

Since the shortest piece of edging is less than 29 cm long, the amount to be cut off must be 5 cm.

The new rods are 15 cm, 36 cm, and 39 cm long.

DIF: Average

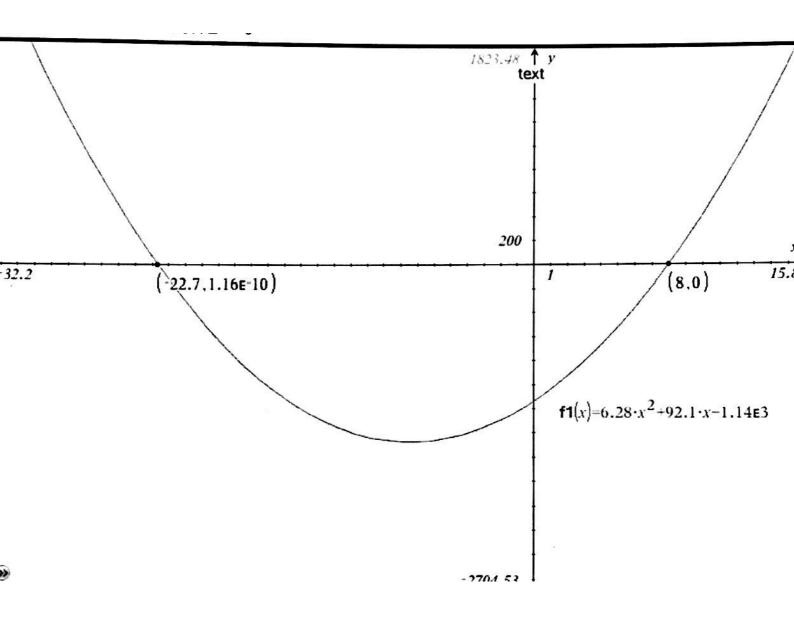
NAT: RF 5 OBJ: Section 4.2

TOP: Factoring Quadratic Equations

KEY: factor trinomial

8. ANS:

Set h = 0 and solve for d.


d = -1.03 or d = 5.83

Set
$$h = 0$$
 and solve for d .

$$d = \frac{-24 \pm \sqrt{(24)^2 - 4(-5)(30)}}{2(-5)}$$

$$= \frac{-24 \pm \sqrt{576 + 600}}{-10}$$

$$= \frac{-24 \pm \sqrt{1176}}{-10}$$

