Physics 112

Friday, September 14/18

http://mvhs.nbed.nb.ca/
http://mvhs-sherrard.weebly.com/

*Bus Evacuation - Sept. 25/18, Period 2 (10:00 to 10:15 -> Bus #5)

- 1. Summative Assessment Basic Knowledge/Skills
 - Topics See Next Page
 - Date: Tuesday, Sept. 18/18

- 2. Return:
 - FA Metric Conversions and Rearranging Equations
- 3. FA Percent Error, SDs and Rules, Conversions and Equations The answer key is posted as an attachment following the Plan of the Day on the school website on Teacher Pages.
- 4. Unit 1 Kinematics
- 5. Learning Targets Unit 1
- 6. Unit 1 Section 1: Vector Analysis
- 7. Mechanics
- 8. Types of Physical Quantities
- 9. Vectors: Direction, Notation & Representation
- 10. Physical Quantities to Know
- 11. Adding Vectors Graphically: 2 Methods
- 12. Worksheet: Order of Vector Addition

Topics - SA: Basics Knowledge/Skills

- 1. physics definition
- 2. metrology definition
- 3. physical quantity definition
- 4. measurements two parts
- 5. scientific notation
- 6. accuracy/precision definitions, interpret scenario
- 7. percent error calculation
- 8. significant digits in a given measurement
 Precision (+ and -) & Certainty (x and ÷) Rules
- 9. SI system quantities and 7 base units (names/symbols) derived units
- 10. SI prefixes names, symbols and powers of ten
- 11. metric conversions 1 step
 2 steps
 m/s ← km/h
- 12. rearranging equations

c) Convert 56.9 m/s to km/h.

Physics 112 **FA – Percent Error, SDs and Rules, Conversions and Equations**

	Name			
1.	A student measured the specific heat of water to be $4.39 \text{ J/g}^{\circ}\text{C}$. The literature value of the specific heat of water is $4.18 \text{ J/g}^{\circ}\text{C}$. What was the student's percent error? (The specific heat is the amount of heat per unit mass required to raise the temperature by one degree Celsius.)			
2	State each anguar to the appropriate number of significant digits (2)			
۷.	State each answer to the appropriate number of significant digits. (3)			
	a) $12.93 \text{ g} + 17.841 \text{ g} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
	b) 4.56 m x 8.2 m =			
	c) What rule did you use in (b)?			
3.	Perform the following conversions. In (a) and (b), use conversion factors. Show some work for (c).			
	a) Convert 7.18 g to Mg.			
	b) Convert 28.9 hs to ds.			

4. Solve for the indicated variable.

a)
$$E_e = \frac{1}{2}kx^2$$
 [k]

b)
$$Ft = 7mv^2 - ds$$
 [v]

c)
$$\frac{e}{x} = \frac{y-r}{f+2}$$
 [y]

Physics 122

Friday, September 14/18

- http://mvhs.nbed.nb.ca/
 http://mvhs-sherrard.weebly.com/
- 1. Justifications and Learning Categories Submit
- 2. Check:

Worksheet: Force Problems - Type I

- 3. FA Force Problem Type I
- 4. Static Equilibrium
- 5. Type II: Suspended Objects Simple To Be Continued
- 6. Worksheet: Force Problems Type II (Simple)
- 7. FA Force Problem Type II (Simple)
- 8. Type II: Suspended Objects Complex
- 9. Worksheet: Force Problems Type II (Complex)

Science 10

Friday, September 14/18

1. Return Results Monday

Assignment - What's in a Name?

- Due: Today, Wednesday, Sept. 12/18
- 2 Days Late Today
- 2. SA Chem #1 -> Date <u>Tuesday</u>, <u>Sept. 18/18</u> Topics - See Next Page
- 3. Check:

Review: SA - Chem #1

4. Ions

P5

- 5. Worksheet: Bohr-Rutherford Diagrams Atoms to Ions Period 4 - Try #2 and #3.
- 6. Worksheet Chemistry: Ions and Subatomic Particles
- 7. Naming Monatomic Ions

Topics: SA - Chem #1

- 1. chemistry
- 2. matter
- 3. types of properties: physical and chemical
- 4. types of changes: physical and chemical
- 5. atoms -> building blocks of matter
 - -> three subatomic particles: p+, n, e-
 - -> locations of three subatomic particles
 - -> electrically neutral: #p+ = #e-
- 6. element
- 7. chemical symbols
- 8. periodic table of the elements periods (rows)
 - groups/families (columns)
 - family and period names
 - location of metals, nonmetals and metalloids
 - characteristics of metals and nonmetals
- 9. atomic number = number of protons
- 10. standard atomic notation
- 11. Bohr-Rutherford Diagrams

Sept. 2018

Science 10

Review for SA: Chem #1

(Chemistry to Bohr-Rutherford Diagrams)

Name	
Part 1 – The Periodic Table	

 a) Choose a color for each of the periods and groups below. Identify the colors you've chosen by coloring in the box beside each period/group. Color the appropriate rows and columns on the periodic table to show the location of each period/group.

b) Identify the metalloids on the periodic table above by writing their chemical symbols in the appropriate boxes.

c) For each element below, indicate whether it is a metal or nonmetal by writing M for metal or NM for nonmetal on the lines provided.

manganese

manganese

manganese

selenium

thulium

hydrogen

hom iodine

helium

d) Below are some characteristics of metals and nonmetals. Print M on the line provided if the characteristic is that of a metal and NM is the characteristic is that of a nonmetal.

brittle		have generally high melting points	
malleable		found in all three states $ \underline{\gamma} $	
bad conductor of heat	MM	can be polished	

Part 2 – Atoms, Subatomic Particles, Standard Atomic Notation and Bohr-Rutherford Diagrams

1. Complete the chart below for the three subatomic particles that make up atoms.

Name of Subatomic Particle Charge of Subatomic Particle Location of Subatom	nic Particle
proton + dositive in the nu	cleus
neutron hentral in the nu	iclen5
electron - hegative in the o	rbits
4	adias th
2. Find tungsten on your periodic table of elements.	
a) What is the atomic number of tungsten?	cleny
b) How many protons are in an atom of tungsten?	24)11
How many electrons are in an atom of tungsten?	1 M
d) Are atoms neutral or electrically charged?	_ '`J
e) If tungsten has a mass number of 184, what is the standard atomic notation for tungsten?	
f) How many neutrons are in an atom of tungsten?	74
1) How many neutrons are in an atom of tungsten?	
g) Draw the Bohr-Rutherford diagram for phosphorous. Phosphorous has a mass number of 31.	
Thosphorous has a mass number of 51.	
310	PN
- 15	

Positively Charged Object

Negatively Charged Object

Neutral Object

Carbon Atom

Part 3 - Vocabulary

Match each term on the left with the correct description on the right by placing the letter of the appropriate description on the line provided.

<u>E</u> _1.	atoms
1	

2. texture

F 3. chemical symbol

G 4. chemistry

<u>J</u> <u>5</u>. <u>lustrous</u>

C 6. cutting

A 7. rusting

H₈. periods

D₉. elements

B_{10. matter}

A. a chemical change

B. takes up space and has mass

C. results in a physical change

D. made up of atoms and cannot be chemically broken down into simpler substances

E. the building blocks of matter

F. abbreviation of the name of a chemical

G. the study of matter

H. rows of the periodic table of the elements

I. a physical property of matter

J. shiny

FIGURE IT OUT!

#6

Each block represents a saying or well-known phrase. Please write your answers on the back of the page.

1 MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE	OPINION OPINION	R Y S	The A Hospital
5 EEE DUMP	BENDING UOY ROF	7 IRIGHTI	8 N
9 MAY AA	10 W W A A L L K K	STAYING THE GAME	ROLE ROLE
AMINPM	WEL L	15 LOV	PAINS
LEFT OUT FIELD	18 1 The 1 1 block 1 1 1	EZ	WAY YIELD