Physics 112

http://mvhs.nbed.nb.ca/

Tuesday, April 16/19

- 1. Submit/Return -> FAs: Laws of Motion Problems
- 2. Check -> Third Law of Motion
- 3. *Pre-Summative Checklist
- 4. Questions re Problems? #12 Courtney
- 5. SA U2: S1&2
 - Date: Thursday (April 18)
 - Format:
 - -> MC (10-15)
 - -> Problems (5)
 - Weight
 - 1st Law Problem
 - 2nd Law Problem (Type II)
 - 2nd Law Problem (Type III)
 - 2nd Law Problem (Type II and III Combined)
- 6. U2 Section 3: Introduction to Momentum Concept Sheet
- 7. Momentum
- 8. Impulse To Be Continued
- 9. Worksheet: C5 Momentum, Page 197: PP #29 C5 Impulse Page 200: PP #30-32
- 10. Impulse-Momentum Theorem
- 11. Worksheet: C5 (I-M Thm) Textbook: Page 203, PP #33-35 Textbook: Page 209, #37-45

Check -> Third Law of Motion

a) To say the weight of the apple is 1.0 N is to say that a downward gravitationl force of 1.0 N is exerted on the apple by			
(the earth	ŀ	ner hand
b) Nellie's hand supports the apple with a normal force ${\bf N}$ which acts in a direction opposite to ${\bf W}$. We can say ${\bf N}$			
	equals W		nas the same magnitude as W
c) Since the apple is at rest, the net force on the apple is			
	zero	n	onzero
d) We	can	(cannot
say that ${\bf N}$ an ${\bf W}$ comprise an action-reaction pair. The reason is that action and reaction forces always			
	act on the same object		act on different objects
and here we see ${f N}$ and ${f W}$ are			
	both acting on the apple)	acting on different objects
e) If we say an action is the earth pulling down on the apple, the reaction is			
	the apple pulling up on the Earth		Nellie's hand pushing up on the apple
f) Another pair of forces is N and the downward force of the apple against Nellie's hand. This force pair			
/ / / / / / / / / / / / / / / / / / /	is an action-reaction pair		is not an action-reaction pair

Physics 122 Tuesday, April 16/19

http://mvhs.nbed.nb.ca/

- 1. Questions?
 - Series Circuits -> Worksheet: Practice Problems
 Parallel Circuits -> Worksheet: Practice Problems
 Combination/Complex Circuits -> Worksheet: Practice Problems
- 2. Circuit #1 and #2
- 3. SA Electric Circuits
- 4. Unit 2 Section 1 Uniform Circular Motion
- 5. Horizontal Circular Motion
- 6. Centripetal Acceleration
- 7. Centripetal Force
- 8. Formulas Horizontal Circular Motion
- 9. Worksheet Circular Motion

Science 122 Tuesday, April 16/19

http://mvhs.nbed.nb.ca/

1. Questions?

Worksheet - Energy of Photons, Work Function, de Broglie Wavelength, Etc.

Worksheet - Nuclear: Energy Levels

SA - Nuclear Physics -> Date: Friday, April 26/19

- 2. Next Topic: Electrochemistry
- 3. Electrochemistry
- 4. Reduction Reactions and Reducing Agents
- 5. Oxidation Reactions and Oxidizing Agents
- 6. Redox Reactions
- 7. Spontaneous Reactions
- 8. Generalizations: Oxidizing Agents and Reducing Agents
- 9. Table of Redox Half Reactions
- 10. Building Tables of Redox Half Reactions
- 11. Worksheet #63
- 12. 5 Steps for Predicting Redox Reactions
- 13. Worksheet #64

Science 10

Tuesday, April 16/19

http://mvhs.nbed.nb.ca/

http://mvhs-sherrard.weebly.com/

- 1. Translating Sentences or Word Equations into Balanced Chemical Equations
- 2. Kahoots Emma and Brook
- 3. Worksheet: Translations
- 4. SA Chemistry #3
 - Topics
 - Date: Wednesday, April 24/19
- 5. ABC Brainstorming
- 6. Review SA Chemistry #3