Name \qquad Date \qquad

Master 5.19

Extra Practice 1

Lesson 5.1: Modelling Polynomials

1. Identify the polynomials in the following expressions.
a) $2 m^{2}+1$
b) $3 x^{\frac{1}{2}}$
c) $-4 x$
d) $\frac{1}{x^{2}+x}$
e) $0.25 y^{2}$
2. Name the coefficients, variable, degree, and constant term of each polynomial.
a) $-8 y$
b) 12
c) $-2 b^{2}-b+10$
d) $-4-b$
3. Identify each polynomial as a monomial, binomial, or trinomial.
a) $19 t$
b) $g-4 g^{2}+5$
c) $-1+x y+y^{2}$
d) $4-11 w$
4. Identify the equivalent polynomials.
a) $-h^{2}-3+4 h$
b) $-3+4 h-h^{2}$
c) $5 m-3$
d) $-2+y^{2}+5 x y$
e) $y^{2}+5 x y-2$
f) $-3+5 m$
5. Use algebra tiles to model each polynomial. Sketch the tiles.
a) $-5+y^{2}$
b) $2 x-1$
c) $-3 a^{2}-2 a+1$
d) $3 z$
е) $v^{2}-4 v$
6. Write a polynomial to match the following conditions.
a) 2 terms, degree 1 , with a constant term of 4
b) 3 terms, degree 2 , with the coefficient on the 2 nd degree term -2
\qquad

Master 5.20

 Extra Practice 2
Lesson 5.2: Like Terms and Unlike Terms

1. From the list, identify terms that are like $2 w^{2}$.

$$
-5 w,-6 w^{2},-2,4 w, 3 w^{2},-w^{2}, 11 w, 2
$$

2. Combine like terms then simplified polynomial.
a) $4+x+1+5 x+1$
b) $-3 y^{2}+3 y-2$
c) $2 x^{2}+8-11-4 x^{2}+5 x^{2}$
d) $3 y+7 y^{2}+1-y-2 y-3 y^{2}$
g) $-4+2 a+7-4 a$
i) $3 a^{2}-2 a-4+2 a-3 a^{2}+5$

$$
\text { j) } 7 z-z^{2}+3+z^{2}-7
$$

1) $-6 x^{2}+10 x-4+4-12 x-7 x^{2}$
5. Identify the equivalent polynomials. Justify your responses.
a) $-5 y^{2}-3 y-4$
b) $10 x-1$
c) $1+x-x^{2}$
d) $2 y^{2}-4-16-7 y^{2}-3 y+16$
e) $-7+5 x-7 x-8+14+12 x$
f) $5 x^{2}+7+4 x-6 x^{2}-6-x-2 x$
6. Write a polynomial to represent the perimeter of each rectangle.
a)

b)

\qquad
\qquad

Master 5.21 Extra Practice 3

Lesson 5.3: Adding Polynomials

1. Add these polynomials.
a) $(x-5)+(2 x+2)$
b) $\left(b^{2}+3 b\right)+\left(b^{2}-3 b\right)$
c) $\left(y^{2}+6 y\right)+\left(-7 y^{2}+2 y\right)$
d) $\left(5 n^{2}+5\right)+\left(-1-3 n^{2}\right)$
2. Add these polynomials.
a) $(-7 x+5)$
b) $\left(4 x^{2}-3\right)$
$+(\underline{2 x-8)}$

$$
+\left(\underline{\left(-8 x^{2}-1\right)}\right.
$$

c) $\left(x^{2}-4 x+3\right)$

$$
+\left(-x^{2}-2 x-3\right)
$$

d) $\left(3 x^{2}-4 x+1\right)$

$$
+\left(-2 x^{2}+4 x+1\right)
$$

3. Add.
a) $\left(y^{2}+6 y-5\right)+\left(-7 y^{2}+2 y-2\right)$
b) $\left(-2 n+2 n^{2}+2\right)+\left(-1-7 n^{2}+n\right)$
c) $\left(3 m^{2}+m\right)+\left(-10 m^{2}-m-2\right)$
d) $\left(-3 d^{2}+2\right)+\left(-2-7 d^{2}+d\right)$
4. a) For each shape below, write the perimeter as a sum of polynomials and in simplest form.
\qquad
i)

ii)

iii)

iv)

5. The sum of two polynomials is $4 r+5-3 r^{2}$. One polynomial is $-8-2 r^{2}+2 r$; what is the other polynomial? Explain how you found your answer.
\qquad

Master $5.22 \quad$ Extra Practice 4

Lesson 5.4: Subtracting Polynomials

1. Subtract these polynomials.
a) $\left(2 s^{2}+3 s+6\right)-\left(s^{2}+s+2\right)$
b) $\left(-12 x^{2}+5 x+16\right)-\left(-x^{2}+2 x+12\right)$
c) $(4-8 w)-(7 w+1)$
d) $\left(x y-x-5 y+4 y^{2}\right)-\left(6 y^{2}+9 y-x y\right)$
e) $\left(x^{2}+2 x-4\right)-\left(4 x^{2}+2 x-2\right)$
f) $\left(-9 z^{2}-z-2\right)-\left(3 z^{2}-z-3\right)$
a) $(m n-5 m-7)-(-6 n+2 m+1)$
b) $\left(2 a+3 b-3 a^{2}+b^{2}\right)-\left(-a^{2}+8 b^{2}+3 a-b\right)$
2. Explain why the student's solution is incorrect
$\left(3 y^{2}+5 y+2\right)-\left(4 y^{2}+3 y+2\right)$
$=3 y^{2}-5 y-2-4 y^{2}-3 y-2$
$=3 y^{2}-4 y^{2}-5 y-3 y-2-2$
$=-y^{2}-8 y-4$
3. The difference between two polynomials is $(5 x+3)$. One of the two polynomials is $\left(4 x+1-3 x^{2}\right)$. What is the other polynomial? Explain how you found your answer.

Name \qquad Date \qquad

Master 5.23

 Extra Practice 5
Lesson 5.5: Multiplying and Dividing a Polynomial by a Constant

1. Multiply.
a) $2(3 b)$
b) $-2(6 h)$
c) $4\left(2 b^{2}\right)$
d) $-2\left(2 x^{2}\right)$
e) $-2\left(-y^{2}\right)$
f) $-3(-2 f)$
2. Divide.
a) $12 d \div 4$
b) $-20 d \div 5$
c) $8 d \div-4$
d) $12 y^{2} \div 4$
e) $-14 x^{2} \div 2$
f) $-10 q \div-5$
3. Determine each product.
a) $4(3 a+2)$
b) $\left(d^{2}+2 d\right)(-3)$
c) $2\left(4 c^{2}-2 c+3\right)$
d) $\left(-2 n^{2}+n-1\right)(6)$
e) $\quad-3\left(-5 m^{2}+6 m+7\right)$
4. Explain why the student's solution is incorrect.
$\left(-5 k^{2}-k-3\right)(-2)$
$=-2\left(5 k^{2}\right)-2(k)-2(3)$
$=-10 k^{2}-2 k-6$
5. Determine each quotient.
a) $(16 v+16) \div(8)$
b) $\left(25 k^{2}-15 k\right) \div(5)$
c) $\quad(20-8 n) \div(-4)$
d) $\left(18 x^{2}-6 x+6\right) \div(6)$
e) $\left(7-7 y+14 y^{2}\right) \div(-7)$
6. Explain why the student's solution is incorrect.
$\left(-12 r^{2}-8 r-16\right) \div(-4)$
$=\frac{-12 r^{2}}{4}+\frac{-8 r}{4}+\frac{-16}{4}$
$=-3 r^{2}-2 r+4$
\qquad
\qquad

Master 5.24 Extra Practice 6

Lesson 5.6 Multiplying and Dividing a Polynomial by a Monomial

1. Write the multiplication sentence modelled by each set of algebra tiles.
a)

b)

c)

2. Write the multiplication sentence modelled by each rectangle.
a)

b)

3. Multiply.
а) $3 c(5 c+2)$
b) $(8+4 y)(6 y)$
c) $5 p(-5-2 p)$
e) $(7 k-3)(-m)$
f) $(-1-10 r)(-r)$
4. Divide.
a) $(6 x+3) \div 3$
b) $(14 w-7) \div-7$
c) $(-15-10 q) \div 5$
d) $\left(8 z^{2}+4 z\right) \div 2 z$
e) $\left(12 c^{2}-6 c\right) \div 3 c$
f) $(9 x y-6 x) \div-3 x$
5. Explain why the student's solution is incorrect.
$\left(-12 x^{2}-9 x-12 x y\right) \div(-3 x)$
$=\frac{-12 x^{2}}{-3 x}+\frac{9 x}{-3 x}+\frac{-12 x y}{-3 x}$
$=4 x^{2}-3+4 x y$

Master 5.25 Extra Practice Sample Answers

