Gravitational Potential Energy

(Energy Due to Position)

$$E_g = mgh$$

 E_g -> gravitational potential energy (J) m -> mass (kg)

g -> magnitude of acceleration due to gravity (m/s^2)

h -> magnitude of object's position relative to reference or zero line (m)

- * A reference level must be stated when solving problems involving gravitational potential energy.
- * Use a negative h value if the object is below the reference level.

Reference/Zero Lines

For all forms of potential energy, there is <u>no absolute zero</u> <u>position or condition</u>. You must establish a <u>reference line</u> or <u>zero line</u> to determine the potential energy or change in potential energy of an object.

Let
$$m = 1.0 \text{ kg}$$

Work-Gravitational Potential Energy Theorem

Work done on an object may change its gravitational potential energy.

$$W = \Delta E_g$$

$$W = Fd = \Delta E_g$$

$$= E_g + E_g$$

$$= M_g + M_g$$

W and ΔE_g will be negative if an object loses gravitational potential energy.