Curriculum Outcome

PR1: Generalize a pattern arising from a problem-solving context using linear equations and verify by substitution.

PR3. Model and solve problems using linear equations of the form:

ax = b; = b, a \neq 0; ax + b = c; +b = c, a \neq 0; = b, $x \neq$ 0 ax ax xa ax + b = cx + d; a(bx + c) = d(ex + f); a(x + b) = c; ax = b + cx concretely, pictorially and symbolically, where a, b, c, d, e, and f are rational numbers

Student Friendly: Replacing the equal sign with an inequality sign (ie. <, >)

Warm-U

1)
$$\frac{1}{3}(15 + 3r) = \frac{2}{5}(15 - 5r)$$

2)
$$3u + 6 - 5u = 17 + 4u - 6$$

3)
$$\frac{2}{3}(5 + 2r) = 4 - r$$

Varm-
1)
$$\frac{1}{3}(15 + 3r) = \frac{2}{5}(15 - 5r)$$

 $\frac{15}{3} + \frac{3r}{3} = \frac{30}{5} - \frac{10r}{5}$
 $5 + \frac{r^2}{3} = \frac{1}{3}$
 $6 + 3r = \frac{1}{3}$

Warm-U

2)
$$3u + 6 - 5u = 17 + 4u - 6$$

$$-2u + 6 = 11 + 4u + 2u$$

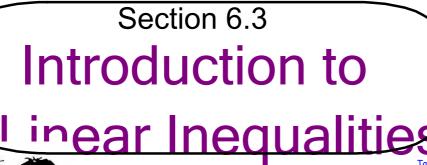
$$6 = 11 + 4u + 6$$

$$-5 = 4u$$

$$6 = -5$$

$$6 = -5$$

Warm-U


3)
$$\frac{2(5+2r)}{3} = 4-r$$

$$\frac{10^{(3)}}{3} + \frac{4r^{(3)}}{3} = 4^{(3)}r^{(3)}$$

$$10 + 4r^3 = 12 - 3r^{(3)}$$

$$10 + 4r = 12^{-10}$$

$$10 + 4r = 12$$

What is an inequality? or 2.36m tall

Smallest man 29 inches or 0.74m tall

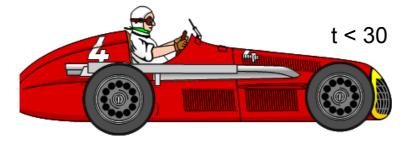
We use inequalities to model situations that can be described by a range of numbers instead of a single number.

When one quantity is....

less than

greater than

less than or equal to


greater than or equal to

Which of these inequalities describes the time, *t* minutes, for which a car could be legally parked?

t > 30 t ≥ 30

t ≤ 30

Define a variable and write an inequality for each of the following situation:

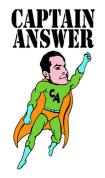
Variable: s, speed

Inequality: s≤55

Variable: h, height

Inequality: h ≥ 102

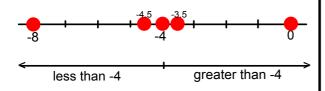
Variable: *t*, temperature


Inequality: t < 4

Variable: a, age

Inequality: a ≥ 14

Determining whether a number is a solution to an inequality


Is each number a solution of the inequality $b \ge -4$?

We can do this in TWO different ways:

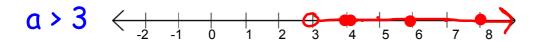
Method 1: Using a Number Line

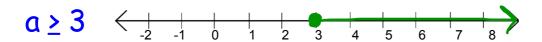
Show all numbers on a line.

The solution of $b \ge -4$ is all numbers that are greater than (to the right) or equal to -4.

For a number to be greater than -4, it must lie to the right of -4.

- a) -8 is to the left of -4, so -8 isnot a solution
- b) -3.5 is to the right of -4 so -3.5 is a solution c) -4 is equal to itself, so it is a solution
- d) -4.5 is to the left of -4, so -4.5 isnot a solution e) 0 is to the right of -4, so 0 is a solution

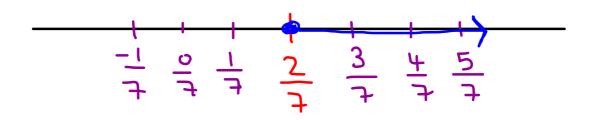

Method 2: Use Substitution.

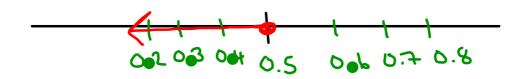

Substitute each number for *b* in the inequality $b \ge -4$.

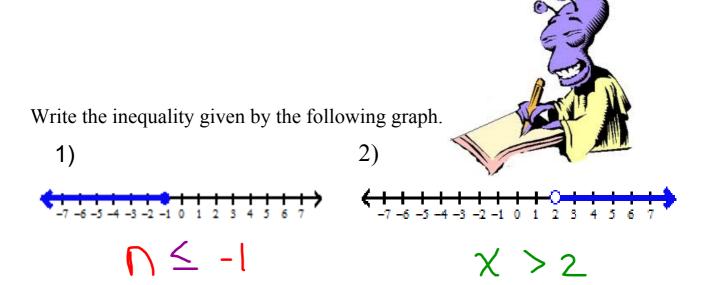
Determine whether the resulting inequality is true or false.

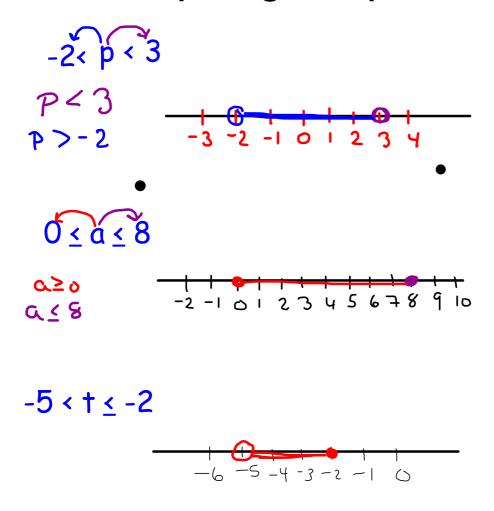
- a) Since $-8 \ge -4$ is false, -8 is not a solution.
- b) Since -3.5 \geq -4 is true, -3.5 is a solution. c) Since -4 = -4, -4 is a solution.
- d) Since $-4.5 \ge -4$ is false, -4.5 is not a solution.
- e) Since $0 \ge -4$ is ture, 0 is a solution.

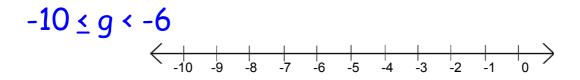
Graphing inequalities

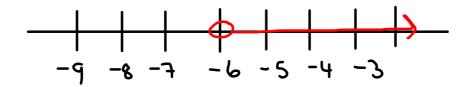







$$b \geq \frac{2}{7}$$




Graphing inequalities

Class/Homework

Page 292-293

Questions: 3(aceg), 4, 7(ac),8,9,

12,13(aceg)