Exam Review

Chapter 3
Rational Number

Jan 8-8:08 AM

What is a rational number?

Jan 8-8:53 AM

Numbers

any # that can
be written as fraction

any number including decimal that repeats

0.1333

→ any # that ends

Jan 15-8:48 AM

Oct 31-5:27 PM

$$-\frac{5}{4} = -\frac{1}{4}$$

...Greatest

Oct 27-10:29 PM

Which rational number is larger??

(Decimals may be used on this side.)

(NO Decimals please!!.)

$$\frac{16}{24} \qquad \frac{18}{24}$$

1) Identify wether the number is rational or non-rational

<u>2</u> 3

1.66

1.234567.....

-2.25

2)Express each fraction as a decimal

- a) <u>4</u> 5
- b) <u>9</u>
- c) <u>3</u>

3)Express decimal as a fraction mixed fraction

- a) **0.1**
- b) **4.75**
 - c) **-3.222**

Feb 2-7:51 PM

Sept. 14

3.2 Adding Rational Numbers

Write each mixed number as an improper fraction:

1) $3\frac{3}{5}$

 $^{2)}-5\frac{5}{6}$

Copy this DOWN and Hand this IN

3) Put the fractions in order from least to greatest

$$-\frac{1}{2}$$
, $-\frac{4}{5}$, $-\frac{11}{15}$, $\frac{2}{32}$, $\frac{1}{20}$

Adding Fractions

When adding fractions you need a COMMON DENOMINATOR:

1)
$$\frac{-5}{8} + \frac{6}{8}$$

2)
$$-\frac{8}{7} + \frac{-4}{7}$$

$$=\frac{1}{8}$$

$$\begin{bmatrix} = \frac{-17}{7} \\ -\frac{17}{3} \end{bmatrix}$$

Oct 29-10:22 AM

Determine the sum of each of the following

$$1) \quad \frac{-3}{7} + \left(\frac{-3}{7}\right) =$$

c)
$$2.7 + (-8.7)$$

4.5

0,8

Nov 1-9:01 PM

Oct 30-3:39 PM

What about mixed numbers?

 $2\frac{1}{3} + 2\frac{3}{5}$

Step 1: Write each mixed number as an improper fraction.

Step 2: Find a common denominator, and then add numerators.

$$\frac{35}{15} + \frac{39}{15} = \frac{74}{15}$$

$$= 4 \frac{14}{15}$$

Oct 30-4:02 PM

$$2\frac{1}{3} + 2\frac{3}{5}$$

$$\frac{1}{3} + \frac{3}{5} + \frac{9}{15} = \boxed{\frac{14}{18}}$$

Jan 15-8:59 AM

1) Identify whether the number is rational or non-rational

i)	<u>3</u>	-3.286754	1.66	-0.33	1.85

- 2)Express each fraction as a decima(Show all work)

- 3)Express decimal as a mixed fraction in simplest form. (Show all work)
 - a) **0.4**
- b) **-3.2**
- c) **1.125**
- 4) Determine each sum. (Show all work)

- b) $\frac{8}{3} + \frac{5}{4}$ c) $-3\frac{2}{7} + 2\frac{1}{4}$

Oct 18-2:06 PM

4) On December 18th, the temperature in Miramichi was -21.6°C. By noon the next day, the temperature increased by 3.7 °C.

a) What was the temperature at noon on December 19 the

b) On December 17^h , the temperature was 2. fC less than (colder than) that of December 18^h . What was the temperature on the 17^h ?

Section 33 Subtracting Rational Numbers

When subtracting Rational Numbers you must have a ...

Common Denominator

Ex)
$$\frac{13}{7} - \frac{4}{7} =$$

Same Denominators

This look similar to adding Rational Numbers

Oct 18-7:52 PM

You try ...

(Remember to write all solution in simplest form)

1)
$$\frac{21}{2} - \frac{24}{2}$$

$$\frac{-25}{13} - \frac{16}{13}$$

$$\frac{11}{4} - \frac{5}{4}$$

When denominators are different you have to find a "common denominator"

By determining the **LCM**

Lowest Common Multiple (of the denominators)

Oct 18-8:27 PM

You try...

2)
$$2\frac{1}{5} - 5 + \frac{2}{3}$$

___ _

$$\frac{-2}{7} - \frac{5}{28}$$

Subtracting Rational Numbers in Mixed Number Form

$$3\frac{1}{5} - 2\frac{7}{10}$$

STEP 1) Write each mixed number as an inproper fraction

$$\frac{16}{5} - \frac{27}{10}$$

STEP 2) Find common denominators and then subtract like before

$$\frac{5}{10} = \frac{1}{2}$$

STEP 3) Reduce all fractions

-

Oct 18-8:56 PM

$$3\frac{1}{5} - 2\frac{7}{10}$$

$$\frac{2}{10}$$
 - $\frac{7}{10}$

$$\left| \frac{5}{10} \right| = \frac{10}{10} = \frac{5}{10} = \frac{5}{10} = \frac{1}{3}$$

Your Turn

$$1) -2\frac{2}{9} - \left(-3\frac{1}{3}\right)$$

2)
$$6\frac{1}{2} - 3\frac{1}{7}$$

Oct 18-9:23 PM

Multiplying Rational Numbers

What rules do we use to multiply integers?

Indicate if the answer will benegative or positive. How do you know?

$$(-4) \times 3 = (-)$$

$$(-3) \times (-6) = (+)$$

$$2 \times 8 = (+)$$

$$(+) (-) = (-)$$

Copy down

When multiplying integers, we use the following rules:

(a negative #) x (a positive #) = (a negative #)

a negative # x a negative # = a positive #

a positive # x a positive # = a positive #

when the signs areopposite, the product is negative

and

when the signs are the same, the product is positive!

Nov 1-8:10 PM

Now, let's take a look at

Fractions

What rules do we use to multiply fractions?

Evaluate the following expression.

$$\frac{6}{5} \times \frac{8}{7} = \frac{6 \times 8}{5 \times 7} = \frac{48}{35}$$

How did you get your answer?

When multiplying fractions, we use this rule:

Multiply the numerator by the numerator then

Multiply the denominator by the denominator

** Then, of course, REDUCE!! (if possible)

Try these out!

Use what you know about multiplying integers & fractions to evaluate the following expressions.

$$\left(\frac{7}{-4}\right) \times \frac{9}{2}$$

$$9 \times (-3)$$

$$\left(\frac{7}{-4}\right) \times \frac{9}{2}$$
 $9 \times (-3)$ $\frac{9}{2} \times \left(\frac{-3}{10}\right)$

★ Don't forget to ALWAYS reduce if possible!

$$\left(-\frac{8}{3}\right) \times \left(-\frac{6}{5}\right)$$

Nov 1-6:12 PM

Nov 1-6:27 PM

13

 $2 \div \frac{1}{3}$

Jan 9-11:12 AM

Determine the missing number in the division statement.

Dividend Missing

$$() \div 4 = 3$$

Think:

Division is the inverse of Multiplication.

What # goes in the blank?

Any division statement can be written as an equivalent multiplication.

OR

$$(\underline{}) = x$$

To Solve for Missing Dividend take Divisor X Quotient

Now with Rational #s___

You Try

A)
$$\left(\begin{array}{c} \\ \end{array}\right) \div \left(\begin{array}{c} \\ \hline{11} \end{array}\right) = \frac{3}{7}$$

B)
$$\pm 12.6 = 4.2$$

Determine the missing	number in the division statement.
15 ÷ () = -5	isor Missing Decimals Think: Quotient is negative thus the BLANK mus be what sign?
What # goes in the blank?	ÿ <u>——</u>
OR 15 = -5 x ()	To solve formissing Divisor take Dividend ÷ Quotient Erase to see
15 = -5 x () or -	Multiply by the reciprocal reciprocal of -5 is $\frac{1}{-5}$
You Try 1) -2.5 ÷ = 5	2) 1.16 ÷ = 0.2
What ab	out fractions???

Nov 14-5:40 PM

Determine the missing number in the division statement.

Divisor Missing & Fractions

$$\left(\frac{-6}{7}\right) \div \left(\right) = \frac{18}{49}$$

The Quotient is Positive

Thus the divsor is _____

$$\left(\right) = \left(\frac{-6}{7} \right) \div \frac{18}{49}$$

Divsor = Dividend \div Quotient

Use the strategy of multilpying by the reciprocal

$$\left(\right) = \left(\frac{-6}{7} \right) \times \frac{49}{18}$$

Simplify

$$\left(\right) = \left(\frac{-16}{97} \right) \times \frac{49^{7}}{18^{3}}$$

$$\left(\right) = \left(\frac{-7}{3} \right)$$

Your Turn

A)
$$\left(\frac{15}{26}\right) \div \left(\right) = \frac{-3}{2}$$

Nov 14-7:54 PM

In the order that they appear

Evaluate the following

1)
$$(-5) - 3[18 \div (-3)]^2$$

 $-5 - 3[-6]^3$
 $-5 - 3(36)$
 $-5 - 108$

Oct 19-4:10 PM

Do we need more practice?

1)
$$3 \rightarrow -[(-5)+1]$$

2)
$$(-2.7) \times (3.4 - 8.5) - 6.1 \div 7$$

Nov 21-3:47 PM

1)
$$\left(-\frac{3}{5}\right)\left(\frac{2}{5}\right) - \left(\frac{7}{30}\right) \div \left[\frac{1}{2} + \left(-\frac{1}{6}\right)\right]$$

$$\div \left[\frac{3}{6} + \frac{1}{6}\right]$$

$$\frac{2}{6}$$

$$\left(\frac{-3}{5}\right)\left(\frac{2}{5}\right) - \frac{1}{30} \div \left[\frac{1}{3}\right]$$

$$\frac{1}{30} \div \left[\frac{1}{3}\right]$$

$$\frac{1}{30} \times \frac{1}{10}$$

$$-\frac{6}{35} \times \frac{1}{10}$$

$$-\frac{12}{50} - \frac{35}{50}$$

$$-\frac{47}{50}$$

$$-\frac{47}{50}$$

Jan 8-9:23 AM

Oct 19-10:38 PM

Nov 21-4:06 PM

Class / Homework

Page 144 & 145

-If the question deals with fractions you must work with fractions (no calculator) -As soon as you see a decimal you can use a calculator

```
#2 (without calculator)
# 3(c,d) #18(ac)
#5 (a,c) #19(b,d)
#7(a,b,c) (without calculator)
#10(b,c) (without calculator)
#14 (b, d)
#21 (without calculator)
#23a,c,d,g
```