

Write each product as a power, then evaluate.

#2

a) (4)(4)(4)

b) (-6)(-6)(-6)(-6)

Can you see the difference?

$$\frac{(-4)^2}{(-4)(-4)}$$

what
$$9s$$
 the base?
$$(-4)^{7} \longrightarrow base (-4)$$

$$-3^{5} \longrightarrow base 3$$

$$-(-\lambda)^{3} =$$
 $(-)(-)$
 $+$
 $-\lambda^{5} =$

$$(-2)^{4} =$$
 $-(-2)^{6} =$
 $-(+)$
 $(-)$

$$(-1)^{10247} = -1$$
 $(-1)^{29584} = 1$

Evaluating powers when the base is negative...

If the exponent is even the answer will be positive.

If the exponent is odd the answer will be negative.

1. -4²

 $2. (-3)^2$

3. $(-2)^3$

Warm Up Grade 9 October 1, 2010

Write the following as a repeated multiple and evaluate

Write as a power then evaluate

Express as a power of 2.

$$128 = 2^{\times}$$

Avogadro's number = 6.0221415×10^{23}

The speed of light = 2.99 792 458 × 10^8 m / s

Temperature of the Sun's Core = $1.5 \times 10^{\circ}$ C

since 15000000 kelvin = 14999726.85 degree Celsius

Distance related to Powers of 10 **http://vimeo.com/819138**

Number in Words	Standard Form	Power
One billion	1 000 000 000	10 ⁹
One hundred million	100 000 000	108
Ten million	10 000 000	10 ⁷
One million	1 000 000	10 ⁶
One hundred thousand	100 000	10 ⁵
Ten thousand	10 000	10 ⁴
One thousand	1 <u>000</u>	10 ³
One hundred	100_	10 ²
Ten	1 <u>0</u>	10 ¹
One	1	10 ⁰

^{*}Image taken from "Math Makes Sense 9", page 59, copyright to pearson education Canada

Any number (except 0) with an exponent 0 will equal 1

$$2^{0} = 1$$

 $13^{0} = 1$
 $199^{0} = 1$
 $(-6)^{0} = 1$

Why???

Zero Exponent LAW

A power with an interger base, not including 0, and an exponent of 0 is equal to 1

Write in powers of ten:

$$(5 \times 10^{2}) + (8 \times 10^{7}) + (3 \times 10^{5}) + (1 \times 10^{9})$$

 $(5 \times 10^{2}) + (8 \times 10^{7}) + (3 \times 10^{5}) + (1 \times 10^{9})$
 $(5 \times 10^{2}) + (8 \times 10^{7}) + (3 \times 10^{5}) + (1 \times 10^{9})$
 $(5 \times 10^{2}) + (8 \times 10^{7}) + (3 \times 10^{5}) + (1 \times 10^{9})$
 $(5 \times 10^{2}) + (8 \times 10^{7}) + (3 \times 10^{5}) + (1 \times 10^{9})$
 $(5 \times 10^{2}) + (8 \times 10^{7}) + (3 \times 10^{5}) + (1 \times 10^{9})$
 $(5 \times 10^{2}) + (8 \times 10^{7}) + (3 \times 10^{5}) + (1 \times 10^{9})$
 $(5 \times 10^{2}) + (8 \times 10^{7}) + (3 \times 10^{5}) + (1 \times 10^{9})$
 $(5 \times 10^{2}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$
 $(5 \times 10^{9}) + (1 \times 10^{9}) + (1 \times 10^{9})$

Law of exponents

$$\bigcirc \chi^{\circ} =$$

$$(\chi^2)(\chi^3) = \chi^{2+3} = \chi^5$$

$$3 \frac{\chi^{3}}{\chi^{4}} = \chi^{3} = \chi^{3}$$

$$(\chi^4)^5 = \chi^{(4)(5)} = \chi^{20}$$

(3)
$$(\chi^3 y^4)^{\frac{1}{3}} = \chi^{3(2)} y^{4(2)} = \chi^{21} y^{28}$$

$$\frac{\left(\chi^{3} \mathcal{J}^{2}\right)^{4}}{\left(\chi^{2} \mathcal{J}^{3}\right)^{5}} = \frac{\chi^{13} \mathcal{J}^{8}}{\chi^{10} \mathcal{J}^{9}}$$

$$= \left[\chi^{2} \mathcal{J}^{8}\right]$$

Try this

Evaluate each expression

- a) 5^{0} b) $-(5)^{0}$ c) $(-5)^{0}$ d) -5^{0}

Writing Numbers Using Powers of Ten

A place value chart may help

Write 96 713 as a power of 10

Thousands	Hundreds	Tens	Ones
	Thousands	Thousands Hundreds	Thousands Hundreds Tens

$$= (9 \times 10^{-1})$$

=

Erase to see solutions

Chapter 2.notebook

BEDMAS

$$[3 + (-3)^{2} - 5(3 - 7)^{2}] + 1$$

$$[3 + (-3)^{2} - 5(-4)^{2}] + 1$$

$$[3 + (-3)^{2} - 5(-4)^{2}] + 1$$

$$[3 + (-3)^{2} - 5(-4)^{2}] + 1$$

$$[3 + (-3)^{2} - 5(-4)^{2}] + 1$$

$$[3 + (-3)^{2} - 5(-4)^{2}] + 1$$

$$[-68] + 1$$

$$= -67$$

$$\frac{-15+3-11}{3\times 2-7}$$

REDMAS

$$-5^2+(4+(-2)^2-3)^3$$

$$-5^{2} + (4 + (4) - 3)^{3}$$

 $-5^{2} + (5)^{3}$

$$-25 + 125$$

$$\frac{3^2(5^0+2+2^2)}{2(5+4^2)}$$

2)
$$\frac{4^2(3^4 \div 2^0)}{2^4(3^4 - 2^0)}$$

3)
$$\frac{2^4(4^3 \div 2^2) - 4^0}{3(3^4 + 2^2)}$$

$$\frac{3^{2}(5^{0}+2+2^{2})}{2(5+4^{2})}$$

Top.
$$3^{2}(5^{\circ}+2+2^{2})$$
 $3^{2}(5^{\circ}+2+2^{2})$ $3^{2}(5^{\circ}+2+2$

$$\frac{63}{42} = \frac{3}{2}$$

$$\frac{2)}{2^4(3^4 \div 2^0)}$$

1 1 2

3)
$$\frac{2^4(4^3 \div 2^2) - 4^0}{3(3^4 + 2^2)}$$

Gass Tomework

Complete the following review questions:

Page 87-89

#27

#12 (a, b)
#13 (b, d)
#14 (a, b, c, d)
#17
18

Write each expression as a product and then evaluate the following:

1)
$$3^2 \times 3^2$$

$$^{2)} 2^2 \times 2^5$$

Do you notice anything???

$$^{3)} (-5)^2 \times (-5)^4$$

Exponent Law for a Product of Powers

To multiply powers with the same base, add the exponents.

$$a^m \times a^n = a^{m+n}$$

must be the same base

The variable "a" is any interger, except 0.

The variable "m" and "n" are any whole numbers.

Write each of the following as a single power and then evaluate.

1)
$$7^2 \times 7^4$$

2)
$$(-2)^5$$
 x $(-2)^3$

3)
$$4^5 \times 4$$

What happens when we divide powers with the same base?

 $\frac{7^9}{7^4}$

Do you notice anything???

$$\begin{array}{c} 3) & (-5)^7 \\ \hline (-5)^3 \end{array}$$

Exponent Law for a Quotient of Powers

To divide powers with the same base, subtract the exponents.

$$a^m \div a^n = a^{m-n}$$

Where
$$m \ge n$$

must be the same base

The variable "a" is any interger, except 0.

The variable "m" and "n" are any whole numbers.

Remember to always use BEDMAS when evaluating

Simplify first (using exponent law I) THEN Evaluate each of the following:

1)
$$3^{10} \div 3^6 + 3^2$$

1)
$$3^{10} \div 3^6 + 3^2$$
 2) $-2^3(2^9 \div 2^7) - 2^1$

(BEDMAS)

3)
$$\frac{10^{1003}}{10^{1000}}$$
 - 1

October 12, 2012

Express each as a single power and then evaluate

1)
$$2^{20} \times 2^3 \div 2^7$$
 -(-5)⁷ × (-5)² 3) $\frac{8^{121}}{8^{118}}$

Simplify then Evaluate

4)
$$15(15^{12} \div 15^9) \div 5 + 1$$

Write the following number with powers of ten

5) 21 045

Write the following number in standard form

6)
$$(7 \times 10^{1}) + (8 \times 10^{6}) + (3 \times 10^{6}) + (7 \times 10^{5}) + (1 \times 10^{6})$$

Master 2.20 **Extra Practice 4**

Lesson 2.4: Exponent Laws 1

Write each product as a single power.

a) $4^3 \times 4^2$

b) $5^{0} \times 5^{0}$ c) $(-2)^{2} \times (-2)^{4}$ e) $(-7)^{0} \times (-7)^{2}$ f) $(-9)^{6} \times (-9)^{3}$

d) $-6^3 \times 6^1$

2. Write each quotient as a single power.

a) $8^7 \div 8^5$

b) $10^4 \div 10^0$

Express as a single power.

a) $2^3 \times 2^6 \div 2^9$ b) $(-5)^8 \div (-5)^4 \times (-5)^3$ c) $\frac{6^3 \times 6^5}{6^2 \times 6^4}$

4. Simplify, then evaluate. a) $2^2 - 2^0 \times 2 + 2^3$

b) $(-2)^6 \div (-2)^5 - (-2)^5 \div (-2)^3$ **c)** $-2^2(2^3 \div 2^1) - 2^3$

5. Simplify, then evaluate.

a) $4^3 \div 4^2 + 2^4 \times 3^2$

b) $3^2 + 4^2 \times 4^1 \div 2^3$ **c)** $\frac{3^4}{3^3} + \frac{4^2 \times 4^0}{2^4}$

- 6. Write each relationship as a product of powers or a quotient of powers.
 - a) One million is 1000 times as great as one thousand.
 - b) One billion is 1000 times as great as one million.
 - c) One hundred is one-tenth of one thousand.
 - d) One is one-millionth of one million.
 - e) One trillion is 1000 times as great as one thousand million.
- 7. Identify, then correct any errors in these answers.

Explain how you think the errors occurred.

a) $5^3 \times 5^2 = 5^6$

b) $2^3 \times 4^2 = 8^5$

c) $(-3)^8 \div (-3)^4 = (-3)^4$

d) $1^2 \times 1^4 - 1^3 = 1^3$ e) $\frac{4^2 \times 4^4}{4^2 \times 4^1} = 4^2$

Fill in the following chart

Power	As Repeated Multiplication	As a Product of Factors	As a power
			1 10
$(3^2)^5$			
$(4^2)^3$			
$[(-2)^4]^3$			

Exponent Law for a Power of a Power

To raise a power to a power, multiply the exponents.

$$(a^m)^n = a^{mn}$$

The variable "a" is any integer, except 0.

The variable "m" and "n" are any whole numbers.

Try this

Express the following as a single power

1) $(5^7)^8$ 2) $(10^2)^3$

3) $[(-2)^4]^3$

Evaluate

- 1) $(2^3)^2$ 2) $(5^2)^3$

3) $[(-3)^2]^4$

Exponent Law for a Power of a Product

$$(ab)^m = a^m b^m$$

The variables "a" and "b" are any integer, except 0.

The variable "m" is any whole numbers.

Try this

Write as a power

1)
$$[(-5)^3]^7$$
 2) $-(3^5)^4$

$$(3^5)^2$$

$$(4^8)^2$$

What about a power of a quotient

$$\left(\frac{4}{5}\right)^3$$

Let's Investigate

Step 1) Write the above as a repeated multiplication.

Step 2) Look at the numerators can you express that as a single power

Step 3) Look at the denominators can you express that as a single power

What did you discover?

Exponent Law for a Power of a Quotient

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 BUT b\neq 0

The variables "a" and "b" are any integer, except 0.

The variable "m" is any whole numbers.

Method 1

Use the exponent law for a power of a product

$$[(-6) \times 4]^2$$

$$= \underbrace{\text{Erase To See}}_{=}$$

$$=$$

Method 2

Use the order of operations

$$[(-6) \times 4]^2$$

You Decide

Try some more (use which ever method you want)

2)
$$-(5 \times 2)^3$$

3)
$$\left(\frac{21}{-3}\right)^3$$

$$(5 \times 2)^3 + (2^8 \div 2^5)^4$$

$$[(-4-(-3))^2]^2-(-5^3+2)^3$$

