Exam Review Day 4: Chapter 5 (Polynomials)

Jan 14-8:26 AM

A **polynomial** is one term or the sum of terms whole variables have whole number exponents

 $5x^2 + 1$

Terms with polynomials

Remember:

Monomial: one term χ

Binomial: two terms x + 2 - 7 - 4 - 4

Trinomials: three terms x + 3 -4

Variables: Letters

Coefficients: Numbers out in front of letters

Constant: the number all by itself

Degree: the highest exponent on a variable

Feb 1-9:22 AM

Warm Up

Copy warm-ups into your notebook

1) Classify the following polynomials as either monomials, binomial or trinomial

Monomial $9x^2y$

v + 2t Binomial

Monomial 11

n

Monomial

Triomial k - 7 + b

 $3 + g^{10}$

Binomial

2) What is the degree of the following polynomial? <u>degree 15</u>

$$8x^5 - 6 + 10x - 9x^{15} + 10x^{14}$$

3) Rewrite the above in decending order

$$-9x^{15} + 10x^{14} + 8x^5 + 10x - 6$$

This polynomial has a degree of 8, because the <u>greatest</u> exponent is 8.

The term "+9" has a degree of 0, because there is no variable with it. It is called a "constant", because this term will never change in value.

Certificate 1

Polynomials are written in descending order.

Each term is written from the highest degree

to the lowest.

will be written as...

$$-3x^4+5x^3+4x^2-x+7$$

 $-5x^2 + 2x - 3$

Jan 23-6:38 PM

1) Classify the following polynomials as either monomials, binomial, trinomials or none.

$$3x^2 + 6y \qquad \frac{4x^7}{z}$$

$$\frac{4x^7}{z}$$

$$2x^2 - 5x - 1$$

2) What is the degree of the following polynomial?_____

$$13x^7 - 11x^{12} + 8x^9 - 9x^{11} - 5$$

3) Rewrite the above in decending order

Feb 1-8:26 PM

Jan 24-10:07 AM

Jan 24-1:55 PM

Jan 24-2:16 PM

Jan 15-8:53 AM

Jan 24-2:48 PM

Jan 21-8:36 AM

Jan 21-8:36 AM

Feb 5-9:45 PM

Feb 5-9:48 PM

$$(3x^{2} + 6x - 5) \Theta(-2x^{2} + 10x - 2)$$

$$3x^{2} + 6x - 5 + 2x^{2} - 10x + 2$$

Jan 10-11:18 AM

Copy

Adding Polynomials Without Tiles

understood +1 in front of second bracket so distribute through

Add:
$$(5c - 11) + (-4\hat{c} + c + 7)$$

We can add the polynomials by adding the coefficients of the like terms. We can do this in two different ways:

Method 1:

Add horizontally:

 $(5c - 11) + (-4c^2 + c + 7)$ Remove the brackets.

= 5c - 11 - 4c + c + 7Group like terms.

= $-4c^2 + 5c + c - 11 + 7$ Combine like terms by adding their coefficients (remember that c has a coefficient of 1!)

 $= -4c^2 + 6c - 4$

skip this

Method 2:

Add vertically. Line up the like terms, then add their coefficients.

$$5c - 11$$
+
$$\frac{-4c^2 + c + 7}{-4c^2 + 6c - 4}$$

Feb 6-11:32 AM

Adding Polynomials in Two Variables

Add:
$$(3s^2 + s - 4c - 5cs + 2s^2) + (-5c^2 + 3cs + 6c - 4s + 7c^2)$$

Remove Brackets.

$$=3s^2 + s - 4c - 5cs + 2s^2 - 5c^2 + 3cs + 6c - 4s + 7c^2$$

Group like terms.

$$=3s^2+2s^2+s-4s-4c+6c-5cs+3cs-5c^2+7c^2$$

Combine like terms.

$$= 5s^2 - 3s + 2c - 2cs + 2c^2$$

Create a Polynomial that adds to give $4x^2 + 6x - 4$

When given:

$$-2x^2 + 2x - 6$$

Feb 8-8:51 AM

- 1) If the sum of two polynomials is 3x5x + 7 and one polynomial is the following, determine the other polynomial.
- a) $-7x^2 + 6x 2$

b) 12x² - 18x

- 2) Make two shapes that corresponds to each given perimeter
 - a) P= 3x +11
- b) P = 12x + 10

Feb 8-8:24 PM

Feb 8-7:37 PM

Feb 8-6:35 PM

Feb 6-5:09 PM

Feb 6-6:25 PM

$$\frac{36xy + 12xy^{2} - 15x^{2}y}{3xy}$$

$$\frac{36xy + 12xy^{2} - 15x^{2}y}{3xy}$$

$$\frac{36xy + 12xy^{2} - 15x^{2}y}{3xy}$$

$$\frac{12 + 4y' - 5x'}{3xy}$$

Gass Homework

Pg 259 - 261

#6 #9 #12 a, d #14 a #15 a, b, c, d #19 a #22 a,c,h,k,l #26 a,c,e,g #28 b, d, f

Check Answers in back of textbook

Feb 21-9:58 AM

$$-\frac{12x^5+6x^2}{3x^2}$$

Jan 10-11:35 AM

$$\frac{1+5}{3} = \frac{1}{3} + \frac{5}{3}$$

$$\lim_{n \to \infty} 10.11:28 \text{ AM}$$

Feb 7-8:34 PM

Feb 7-9:09 PM

Feb 7-9:16 PM

Dividing a Monomial by a Monomial

Divide coefficients with coefficients and variables with variables

Follow exponent laws for variable with the same base

1)
$$\frac{-8 x^2}{2 x}$$

$$\frac{150 \text{ y}^5}{25 \text{y}^2}$$

You Try!

1)
$$\frac{72x - 48x^2}{12x}$$

Feb 13-11:25 PM

Feb 12-3:18 PM

Feb 12-3:18 PM

Jan 15-9:18 AM