Vertex	
Domain	
Range	
Stretch Factor	
Direction of Opening	
Maximum or Minimum	
Equation of Axis of Symmetry	
y-Intercept	

Provide a sketch of this function on the axes below. Be sure and label the coordinates of three key points that were used to determine the sketch.
2. Solve the following radical equation:

$$
\begin{equation*}
7+\sqrt{3 x}=\sqrt{5 x+4}+5 \tag{8}
\end{equation*}
$$

3. The Chinese architectural marvel shown to the right depicts an opening that consists of a parabolic arch sitting at the top of two 60 m columns. The parabolic arch is 22 m wide at the bottom and it's highest point is 9 m above the top of the columns.
(a) Draw a sketch of this parabolic arch on a Cartesian Plane. Determine a quadratic function that describes the parabolic arch.

(b) At a point 6 m from the left column of the opening, determine how far it would be from the top of the head of a person measuring 1.85 m in height up to the top of the arch.
4. Simplify each of the following radical expressions:
[10]
(a) $\frac{3 \sqrt{50}+\sqrt{27}}{(\sqrt{8}-1)^{2}}$
(b) $3 x \sqrt[4]{32 x^{9}}-5 \sqrt{72}+\frac{3}{5} \sqrt{200}+\sqrt[4]{162 x^{13}}$
5. An electronics store sells an average of 60 entertainment systems per month at an average of $\$ 800$ more than the cost price. For every $\$ 20$ increase in the selling price, the store sells one fewer system. What amount should be charged above the cost price in order to maximize profit?
6. Solve the equation $\frac{2}{x^{2}+5 x-14}=\frac{3 x}{x+7}+\frac{2 x-1}{x-2}$. State all non-permissible values of x.
(Express solutions to the nearest hundredth)
7. Simplify the following rational expression. State all non-permissible values of the variable.

$$
\left(\frac{x-1}{x^{2}-5 x-6}-\frac{x-2}{x^{2}+4 x+3}\right) \times \frac{4 x^{2}-23 x-6}{30-20 x} \div \frac{16 x^{2}-1}{x^{2}+4 x+3}
$$

