\qquad

1. Complete the chart and sketch one full cycle for the functions in the space provided below. Be sure to clearly label and scale both axes on your graphs.

$$
-3(y-2)=12 \cos \left(3 \vartheta-30^{\circ}\right)+9
$$

DOMAIN	
RANGE	
AMPLITUDE	
PERIOD	
PHASE SHIFT	
VERTICAL TrANSLATION	
EQUATION OF SINUSOIDAL AXIS	
MAPPING NOTATION	

Sketch \rightarrow

2. The base function $f(x)=\sqrt{x}$ is transformed into a new function $g(x)$. The following transformations are applied:

Reflected in the y-axis, stretched horizontally by a factor of 3, stretched vertically by a factor of 4 and translated 1 unit to the left and 6 units up.
(a) Write an equation using function notation $g(x)=a f[b(x+c)]+d$ of the transformed function $g(x)$.
(b) Write a mapping rule that would transform the graph of $f(x)$ into the graph of $g(x)$.
(c) Given that the ordered pair $(9,3)$ lies on the graph of $f(x)$, what are the coordinates of this point on the graph of $g(x)$?
(d) Without using the ordered pair from part (c), determine the coordinates of an ordered pair that would fall on the on the inverse of $g(x)$?
3. Given that $f(x)=\sqrt{3-x}, g(x)=x^{2}-1$, and $w(x)=1-3 x \ldots$
(a) Evaluate: $(g \circ w \circ f)(-6)$
(b) Determine an expression in simplest form for $\frac{g(2 a-h)-g(2 a)}{(3 h) w(1)}$
4. The picture below depicts a waterwheel that was used to power a sawmill back in the late 1800 s. The wheel has a radius of 3.5 m and is set up in such a manner that the blades on the wheel rotate and reach a depth of 1 m below the surface of the water. As the blades are rotated by the water, a clever young Mathematician follows the path of one of the blades and records the following data:

- Blade is located at its lowest point at 2.4 s and the same blade reaches its highest point at 4.2 s
(a) Draw a sketch that depicts the height above the water of this particular blade of the waterwheel at any time in seconds. Be sure the graph is clearly labeled and scaled!

(b) Determine a function $h(t)$ that would determine the height above the ground in metres of the blade at any time in seconds.
(c) Determine the height above the water (or below the water) of this particular blade 2 minutes and 13 seconds after the young Mathematician began recording data.
(d) Determine the angular velocity in radians per second of this waterwheel.
(f) Determine the first three instances that this particular blade being examined by the young Mathematician would have been located at a height of 3.4 m above the water.

5. Evaluate the following expression without using a calculator: (Sketch must be provided for each angle)

$$
\sin \left(\frac{19 \pi}{6}\right)-\tan ^{2}\left(\frac{31 \pi}{3}\right) \sec (47 \pi)+\sin ^{2}\left(-\frac{37 \pi}{4}\right)+5 \csc \left(-\frac{23 \pi}{2}\right)
$$

[12]

