\qquad
Show all work for each of the following in the space provided.

1. Given the function $f(x)= \begin{cases}(x+2)^{2}-1 & \text { if } x<-1 \\ 3 x+1 & \text { if }-1 \leq x \leq 2 \\ 5 & \text { if } x>2\end{cases}$
(a) Evaluate $f(-1)+4 f(0)-f(2) \quad$ (b) Sketch $f(x)$ on the axes provided below.

2. Given that $f(x)=x^{2}-2, g(x)=-2 x+1$, and $w(x)=\sqrt{7-x} \ldots$
(a) Evaluate $(g-w)(-2)$ [3]
(b) Evaluate $(f \circ g \circ w)(-9)$
3. The base function $g(x)=x^{3}$ is reflected in the y-axis, stretched horizontally by a factor of $\frac{2}{7}$, stretched vertically by a factor of 3 and translated 2 units to the left and 6 units down.
(a) Write the equation of the transformed function $f(x)$.
(b) Write a mapping rule that would map the function $g(x)$ to this new function after all of the above transformations have been applied.
(c) If the ordered pair $(-21,8)$ lies on the graph of $g(x)$, what are the coordinates of this point on the graph of transformed function?
4. Given that $g(x)=7 f(-3 x+12)-5$, complete the chart shown below. When identifying translations be sure that you indicate both the number of units and direction of the shift.
(i) Complete the chart shown below

Reflected in x-axis	YES or NO (circle correct solution)
Reflected in y-axis	YES or NO (circle correct solution)
Horizontal translation of...	
Vertical translation of...	
Horizontally stretched by a factor of...	
Vertically stretched by a factor of \ldots	

(ii) Write a mapping rule to transform $f(x)$ to the function $g(x)$.
(iii) If the ordered pair $(-9,3)$ is on the graph of $f(x)$, determine the coordinates of this point if it were located on the graph of $g^{-1}(x)$.
6. (a) Given the graphs of $y=f(x)$ and $y=g(x)$, express the equation for $g(x)$ in the form $g(x)=a f(b(x-c))+d$.

(b) State the domain and range of the function $f(x)$.

